e——]S Army Information Systems Engineering Command
: Fort Huachuca, AZ 85613-5300

USAISEC D

U.S. ARMY INSTITUTE FOR RESEARCH

o ot D Cover SeNCES]E)L-!-C]T E
“ ~A249 033 . |
AR s APRO 102

D
MULTIMEDIA NETWORK DESIGN

STUDY

90
(ASQB-GC-89-002)
30 September 1989

This document has boe:
for Public release and ?ul:pftiond
distribution is unlimited.

AIRMICS

115 O’Keefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800

2-09106
92 4 08 106 IGTHEEER

This document provides a report on the first year of the three-year AIRMICS Multimedia
Network Design Study with the work being done by the Harris Corporation. Its goal was
to create a closed-form analytical queuing model for networks of queues. The Army’s
worldwide communication system has become a conglomeration of many systems such as
DDN, DSN, AUTOVON, and wide or local area networks. The need for an efficient
interconnection of these systems requires that systems be evaluated as a group as opposed
to individual nodes. Therefore this research will provide a formal mathematical model
specifically developed for the analysis of multimedia (e.g. coaxial cable, fiber optics, and
twisted pair) networks. The primary output of the project is a PC/AT hosted program,
MMDESIGN, which implements the formal mathematical model and provides a user
interface for analyzing multi-media networks. The program is designed as an iterative
analysis tool and can be used to derive steady state conditions for a network before
attempting simulation analysis of the network to perform transient analysis. Pascal
source code is provided in the report.

This research was performed under contract number DAK11-88-C-0052 for the Army
Institute for Research in Management Information, Communications, and Computer
Sciences (AIRMICS), the RDTE organization of the U.S. Army Information Systems
Engineering Command (USAISEC). This research report is not to be construed as an
official Army position, unless so designated by other authorized documents. Material
included herein is approved for public release, distribution unlimited. Not protected by
copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

John W. Gowens John R. Mitchell
Division Chief Director
CNSD AIRMICS

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

T‘orm Approved
OMB No. 0704-0188
Exp. Date: Jun 30, 1986

1a. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

M
2a. SECURITY CLASSIFICAION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

(0], | ——
3. DISTRIBUTION/AVAILIBILTY OF REPORT

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
CLIN 0001 AA SUN 0001 AB

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Hsa NAME OF PERFORMING ORGANIZATION

Harris Corporation

CDRL A001/3 ASQB-GC-002
6b. OFFICE SYMBOL]7a. NAME OF MONITORING ORGANIZATION
(It applicable)
AIRMICS

FBc. ADDRESS (City, State, and Zip Code)
Melbourne, FL, 32802

YT T
8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL
ORGANIZATION (it applicable)
AIRMICS ASQB-G

7b. ADDRESS (City, State, and ZIP Code)

115 O’Keefe Bldg.

Georgia Institute of Technology
Atlanta, GA 30332-0800

BT Y Y I T T YT YRS P YT BTV WYY =Tt T T T T Yy —————
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

DAKF11-88-C~-0052

8¢c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

115 O°Keefe Bldg. PROGRAM PROJECT “TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO.| NO. NO. ACCESSION NO.
Atlanta, GA 30332-0800 P612783 DY10 03-02-09 DA 315 378

11. TITLE (Include Security Classitication)

Multimedia Network Design Study: First Year Final Report

12. PERSONAL AUTHOR(S)
Dr. John R. Doner

13a. TYPE OF REPORT 13b. TIME COVERED

Annual FROM_OCT 88710 OCT 89

15. PAGE COUNT
76

14. DATE OF REPORT (Year. Month, Day,
89, SEP, 30

16. SUPPLEMENTARY NOTATION

COSAT! CODES
GROUP

17.
FIELD

SUBGROUP

Multimedia,

18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)

Network, Queing, Modeling

19. ABSTRACT (Continue on reverse iIf necessary and identity by block

" Design Study. Briefly, the study goals for the
the first year of the study, now completed, the
queuing model for networks of queues.

L"?'rhis document provides a report on the first year of the three-year AIRMICS Multimedia Network

The second year of the study, now beginning, will build
on the effort of the first year by enhancing the utility of the network-of-queues model to

number)

three years of the effort are as follows.
goal was to create a closed-form analytical

In

20. DISTRIBUTIONN/AVAILIBILTY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION i
[X] UNCLASSIFIED/UNLIMITED[T] SAME AS RPT. [] DTIC USERS UNCLASSIFIED '
[22a. NAME OF RESPONSIBLE INDIVIDUAL T 220. TELEPHONE (InClude Area Code)] 22c. OFFICE SYMBOL
CPT Timothy M. O'Hara 404/894-3136 ASQB-G

provide automated optimization capabilities. The third year of the study will attempt to in-
tegrate the use of this tool with a quantitative approach to define type mission of a communi-
cations system, and evaluating in an exact way the effects of the communication system on mis-
sion-oriented (not communications-oriented) metrics.

In the first year, a careful literature search was completed to determine the scope and depth
of the selected modeling technique and its applicability to large-scale complex communications
networks. The general result of this search was that the techniques of closed-form analysis
are applicable to certain important areas of network design, and in fact complement, rather
than replace, simulation techniques. The issues which can be dealt with by closed-form analy-
sis relate to the proportioning of traffic across the available media in the system. |,

DD FORM 1473, 84 MAR

83 APR edition may be used untl exhausted.

Al ther editions are obsolete. —SECUBITY CIASSIFICATION OF THIS PAGE

MULTIMEDIA NETWORK DESIGN STUDY

FIRST YEAR FINAL REPORT

SUBMITTED BY
DR. JOHN R. DONER, PRINCIPAL INVESTIGATOR

HARRIS CORPORATION
GOVERNMENT COMMUNICATIONS SYSTEMS DIVISION
P.O. BOX 91000
MELBOURNE, FL 32902

Accesion For

NTIS CRA& d’

pTiC TAB 1
Urannounced i
Justification

...............................

vy)

- e et e e e

Auailebinly Codes

b AVaE € nor
Dist Speciai

A |

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY ..t ecctetaretacerasranta st asaes 2
2.0 THE RATIONALE FOR CLOSED-FORM

NETWORK QUEUEING ANALYSIS.....cciiioeccciticratstscccrocseannrennes 4
2.1 Closed-Form Modeling as an Adjunct to Simulation.................. 4
2.2 An Explanation of the Cilosed-Form Network-of-Queues

LY LT« T 1 PP 7
2.3 Computational Considerations for the Closed-Form

T OCHNIQUO....anaeeeeeiiiieieeereceariiscacesasassossesssssssnssassessssassonnacasnsans 14
2.3.1 The Computational Process in a closed Network........................ 15
2.3.2 The Computational Process in an Open Network........................ 16
3.0 CLOSED-FORM MODELING APPLIED TO

MULTIMEDIA COMMUNICATION. ...t iieateeieneeasransenne 17
3.1 The Multimedia Network NOde........c..ccciiiiciiiiiiiaiiiioitianciiaenennes 17
3.2 The Multimedia Network Composite Channel............c.ceeeeenne.. 18
3.3 The Error Process for the Composite Channel......c.....cceceaeenaanne. 19
3.4 Accounting fot Error Correction Traffic..........cccooiiiiiiiiiiiiiaenn. 20
3.4.1 Erroneous Traffic Effects at the Transmitting Node..................... 21
3.4.2 Erroneocus Traffic Effects at the Receiving Node......................... 21
3.5 Computing Transmission Delays through the Network................ 22
4.0 INSTRUCTION MANUAL FOR THE MMDESIGN PROGRAM..... 24
4.1 Explanation of Program [INPUtS.......c.coociiiiiiiireieiireccriiacreacaneaannns 24
4.2 Program Organization and Menus.........ccccoviviiiiiiiieincenrrerctecaannnn 27
4.2.1 User Intertace [=1 4 1 17 - | SO U 27
4.2.2 Intepretation oOf the MEeNUS.........cccieiieiieiiieiiiieiontecrcsecssrssnncannnes 28
4.2.2.1 The “N(OW" CommMAaNnd.oeeeiiniiiieiniiiaaaaieaaeaeasaeasscasasascassansnn 28
4.2.2.2 The “C(reate” COMMEBN. ... eeiieietiietieeeeetecesasssanssecsessssassses 29
4.2.2.3 The TE(dit™ CoOmMMEANd.....cccooaiiueieiiiiiiieiinieaaacaressmceoncesesssacsanassassen 30
4.2.2.4 The “H(ardcopy™ COMMBNG. ... iiiiiieeeeeieseaassncescnesaseean 31
4.2.2.5 The “R(ecall” COMMAN.........cco.oiiveiiiiiiiiinneeaacacstaacisacsraeasessccas 32
4.2.2.6 The "T(hruput™ COMMEANd.........cooieieriiiieieeierteeecnecsacnnnnananansses 32
4.2.2.7 The "P(aths” CommMand.....c....ciiiiiiiiiiiiiaiicteaciiiarraesraarassocannnas 33
4.2.2.8 The “M(etrics” CoOmMMANC.........cciiiteriiiiieeinreeeereeiasceeeaacesaennnnnn 34
4.2.2.9 The "Q(uit" (07214314 2T 14T < H P 35
4.3 Summary and Further Directions.........c....cooviiiiiiiiiiiiiiiiieeeieeeaeenns 36
5.0 REFERENCE S. .. it iiiiiitiiiiaccettetetaananaaenaecamrcaesacrasarcresanns 37

APPENDIX A -—- MMDESIGN MENU NAVIGATION.................... 38

APPENDIX B -- OPEN NETWORK MATHEMATICS.................. 38

APPENDIX C -- MMDESIGN SOURCE CODE........ccccccvnnvnnneen. 43

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
1

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

1.0 EXECUTIVE SUMMARY

This document provides a report on the first year of the three-year AIRMICS
Multimedia Network Design Study. Briefly, the study goals for the three years of
the effort are as follows. In the first year of the study, now completed, the goal
was to create a closed-form analytical queueing model for communication
networks. The second year of the study, now beginning, will build on the etffort of
the first year by enhancing the utility of the network-of-queues model to provide
automated optimization capabilities. The third year of the study will attempt to
integrate the use of this tool with a quantitative approach to defining the mission
of a communications system, and evaluating in an exact way the effects of the

communications system on mission-oriented (not communications-oriented)
metrics.

In the first year, a careful literature search was completed to determine the
scope and depth of the selected modeling technique and its applicability to large-
scale complex communications networks. The general result of this search was
that the techniques of closed-form analysis are applicabie to certain important
areas of network design, and in fact complement, rather than replace, simulation
techniques. Closed-form analysis of networks can only deal with steady-state
equilibrium conditions in networks, such as the expected loading and delays in a
network for which offered traffic, topology. and capacities have been allocated.
This is quite ditferent from the function that simulation performs, which is to study
the consequences of specific scenanos in a network.

However, although simulation can yield very highly resolved insights into
network behavior, it does so on a rather ad hoc basis: the simulator can test at
most a very few ot all possible communications scenarios which a network might
be called upon to support. Closed-form analysis can provide giobally applicable
tacts about a network, which may lead 10 early recognition of misallocation of
capacity or potential for chronic overioad. Using closed-form techniques, the
network analyst can examine a wide range of network topologies and gain
general insight into their suitatiity to meet mission requirements given the
expected geographic and temporal veanations in tratfic load. These analyses will
be much more rapidly executed than simulations, and the analyst can fairly rapidly
determine which of a few candcdate erchitectures appear in these general terms
to support system requiremem.' S.myulgtion studies can then proceed on this
subset of architectures with the sssurance that the candidate networks being
simulated are at least close to the best! snswer satistying system requirements.

Thus a well-executed ceeg» program for a large communications network
should involva the interaction o! s.mwsatwon and closed-form analysis, with closed
form analysis being used for & gobe estimation of the correctness of the network
resource allocation, and simulat-on then following to test more specific aspects of
the network design, such as rowi:~ng sirategies Or survivability strategies. Such a
design strategy will produce & more cenain. and a less expensive answer, than
will be obtained by simulaton eione

The intent of this study s t0 apo’y closed-form analysis to multimedia
networks. A multimedia networn wni carry multiple types of traffic on multiple
media. Each traffic type will be more or less suited for transmission on any given
medium, depending on tne medium bandwidhh and error properties. Each traffic
type may have certain essential constrmints on is handling, related to timeliness
and maximum permissible error scceptapie tor the trathc type. In a military

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
2

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

network designed for high survivability and maximum efficiency, the proper

multiplexing of traffic types on the media can be an important factor in achieving
such goals.

This requirement to multiplex traffic types across various media could be
accomplished in several ways, such as allocating a specific proportion of each
medium to each traffic type. The sxtent to which each traffic type would meet its
timeliness and accuracy constraints would then be a function of that allocation.
Since not every traffic type can at all times travel by the medium that is "best” tor
it, a process of compromise is necessary. It is precisely the determination of

such an "optimum”™ compromise that is weil served by the tools of closed-form
network modelling.

The body of this documeni provides a formal mathematical model of
multimedia traffic flow which encompasses the concepts of multiple traffic types,
and multiple media types. The interaction of channel error processes with the
traffic types is accurately captured, so that the muitiplexing ot tratfic types on
media types can be usefully analyzed. The primary output of this first year of
effort is a computer program, called the MMDESIGN program which addresses
the above analysis concerns. This program prompts the network analyst for a
network design (i.e., topology., media, traffic types, routing, etc.), and then makes
available the expected path delays associated with any traffic type over any path,
or collection of paths. The program is designed as an iterative analysis tool: that
is, the manner in which data is gathered, stored, and edited facilitates the
analyst's normal activities in pursuit of the optimization of network performance
relative to tratfic multiplexing concemrns.

The MMDESIGN program is hosted on an IBM PC/AT (or equivalent) and is
written in Turbo Pascal, which is very widely available and well known to IBM PC
programmers. This choice of computer limits the size of the network that can be
handied, due to memory constraints, but the computer serves as a good base for
wide dissemination of the program. The code is largely machine independent,
and so could easily be ported onto a larger machine.

The remaining sections of ttus document provide an explanation of the closed-
form modeling paradigm, its applicaton to multimedia networks, and its
implementation in the MMDESIGN program. Section 2 provides a rationale for
and a description of the closed-forrn network-of-queues modeling paradigm.
Section 3 explains the manner in which multimedia communications can be cast
into that moid. Section 4 is a se!t-contained manual! for the use of the
MMDESIGN program. The appendces to the document provide complete detail

and documentation of for both the mathematics and the computer code used in
the program.

MMDESIGN will be extended 1n the second year 1o consider inclusion of
optimization techniques within the program, such as optimization of capacity
assignment and routing. The design of truly integrated mulitimedia
communications systems is in a pracucal sense still in its infancy. It is hoped that
this study will provide valuablie toois 10 the operational network design community

which must actually come to gnpe with the next generation of communications
systems.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
3

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

2.0 THE RATIONALE FOR CLOSED-FORM NETWORK QUEUEING ANALYSIS

In this section, we will introduce the rationale for the closed-form
communications network modeling paradigm which has been the subject of this
study. We will also provide a rather comprehensive survey of the applicability of
the closed-form technique. This survey is not intended to be mathematically
detailed, but does introduce terminology and concepts for the purpose of
providing the reader with a comprehension of the general strengths and
weaknesses of the technique.

2.1 Closed-Form Modeling as an Adjunct to Simulation

Modem miilitary communications systems are rapidly evolving to take
advantage of increasingly versatile communications technology. Procurement
planning for the near-term future calls for increasingly survivable communications
architectures which rely on an eclectic suite of communications assets. A major
interest of all the military services is to fully integrate the use of multiple
communications media into a single communications capability, the operation of
which requires as little user management and intervention as possible. Such a
system is expected to autonomously determine and ameliorate conditions
detrimental to the expeditious flow of information, thereby creating a whole that
functions better than the sum of its parts.

This idealized concept requires considerable innovation and experiment in the
discipline of network control. Systems will in general comprise iarger collections
of assets, deal with a greater variety of traffic types, and be expected to handle
larger volumes of traffic. Such designs will tax not only the traditional
communications network design methods, but also the existing network design
tools by which such designs are refined from concept to implementation.

The present study is a three-year effort funded by USA AIRMICS to consider
the emerging design problems discussed immediately above. The intent of this
study is to consider several concepts related to the design tools available to the
network design community, and to create tools complementary to those now
existing which will be specifically helpful in addressing the new multi-media,
large-scale network designs of the near tuture.

This document reports on the resulta of the first years effort, the establishment
of a closed-form network-of-queues approach to modeling communications
systems. Since most communications system design efforts rely heavily on
simulation of the network, the rationale for creating a closed-form analytical
mode! of network communications needs explanation. Simulation is, in essence,
a process of determining single-point estimates of a very complex function. The
inputs to the simulation constitute the independent “variable™ (normally a multi-
dimensional vector) of the function, and the outputs from the simulation constitute
the value (again, normally a multi-dimensional vector) of the tunction. The user
of the simulation selects an input value, runs the simulation, and obtains an output
value.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
4

—

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

Based on an iterative sequence of such simulation runs, together with
modification of the simulation and/or its parameters, many major aspects of the
network design may be determined. However, such simulation efforts generally
constitute a sort of intuitive optimization process where the output of each
simulation step guides the designer toward changes in the network design which
will (it is hoped) provide better performance in the next simulation. In effect, the
simulation user is attempting to discover the shape of a surface in a many-
dimensional space by examining a sequence of "points” on that surface, and then
selecting another value for the input argument to the function (i.e., simulation),
which will move the output "point” uphill. This process is somewhat like that
pictured in Figure 2 - 1 below. Since the simulator can only guess at the shape of
the surface near the set of "points” already coilected, it is never possible to assure
that a network design based on simulation has actually achieved optimum
performance within the design constraints.

SIMULATION
RESULTS

FIGURE 2 - 1: Simuiation "Mountaineering”

Of course, the simulator, by examining as many “points™ as possible on the
simulation surface, can reduce the likelihood that there might be a better solution
"near” the final chosen network design. But simulation as applied to modern and
future military network designs tends to be expensive, and the number of events
and communications paths to be simulated tends to grow combinatorially with the
number of network nodes. As future networks move toward integration of all
available media, it will be impossibie to decompose the systems into muitiple smaill
networks, and so the need to handie very large numbers of events and assets in
a single simulation will grow.

Having thus examined the conceptual and practical limitations ot simulation, in
what way can a closed-form, network-of-queues mode! contribute to network
design? First, it should be admitted that such closed-form models are almost
always bypassed in network design studies in favor of simulation. The reason for
this is that a closed-form model can only model the functioning of a network
operating in steady-state performance. Clearly, desigrers ot military
communications systems are very interested in guaging the response ot the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
)

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

network to many types of transient effects, and so cannot rely solely on steady-
state network performance to select the parameters of their system. However,
when oniy simulation is used, the steady-state performance can only be
determined by long simulation runs, and each small change of input conditions
may require another simulation run to obtain the changed steady-state.

Steady-state quantification within a closed-form network-of-queues paradigm
is a much more convenient process. It is safe to say that a network designer
could determine a great number of steady-state network solutions in the time
required to determine a single steady-state solution by simulation. Moreover,
since the closed-form model is analytical (i.e., expressed in terms of equations) in
nature, thaere is the possibility of applying optimization procedures to the
equations that describe the model, thereby obtaining a network design optimized
in some respects directly from a single computer run of the model. Furthermore,
this result may be a true optimum, rather than just a local maximum, as is more
likely to happen when the optimization process proceeds essentially intuilively by
means of simulation.

it is precisely this observation that justifies the use of a closed-form steady-
state model of the system not in lieu of, but as an important adjunct to simulation.
The designer then has an appropriate tool (simulation) by which to study system
transient response, but can also more accurately "size” the network in terms of
total assets required to meet the traffic demand of the system. An appropriate
network design trajectory then uses the closed-form model to gain a giobail
understanding of the network topology and link capacities required to efficiently
meet the overall capacity demand at all points in the system. From this overview,
simulation effort commences to resolve the more specific concerns of protocol
development and allocation of resources at the individual nodes.

This interplay of simulation and closed-form analysis can also be used to
advantage at later stages of system analysis. When network performance is to be
analyzed over a range of scenarios including hostile actions against the system,
simulations are usually done to demonstrate the manner in which the system
recovers from loss of assets. Again, simulation is used here to examine system
transient response as it moves from one steady-state (i.e., fully capable) to
another. However, as was the case for design of the full network, if simulation is
the only tool applied to this situation , then not all availat!e information is being
used. l.e., if the network transits trom a tully capable state to an impaired state,
then each of these states, through appropriate allocation of assets., can achieve
some optimal performance relative to the network mission. If the optimum
configuration in both circumstances !> known, then simulation effort can be
directed at fine-tuning network aligorithms so as to obtain the transient response
which moves the system toward ita new steady-state in the most effective
manner.

Summarizing the above points, simulation by itself is usually not adequate tor a
determination of the true optima possibie tor a network. As communications
networks come to include ever larger suites of equipment, all integrated to serve
as a single system, simulation alone will become less able to determine the best
use of all the system assets, and the use of closed-torm network-ot-queues
modeling will provide a valuable adjunct to the simulation effort. It does not
provide the ability to examine specific protocols and routing techniques, as

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
6

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

simulation does, but it does permit the possibility of better global optimization and
distribution of assets. A large-scale network design etfort will generally be better
served by using closed-form and simulation techniques together.

2.2 An Explanation of the Closed-Form WNetwork-of-Queues Model

The terminoclogy "closed-form” usually refers to technical results expressed in
an equational format, such that all input parameters are independent variables of
the equations, and the desired outputs are obtained by direct solution of the
equations. When the technology in question is too conmpiex to admit of such
representations, it is usually necessary to rely on some sort of iterative solution
procedure based directly on a mechanical characterization of the system
interdependencies and how they serve to dynamically alter the system state.
Solutions of problems in finite element analysis, in iterated differential (or
difference) equations, and in simulation of system interactions ail regresent this
genre of problem solution.

As was stated in the last section, most ite rative solution techniques provide
answers where no closed-form technique is available. Closaed-form techniques,
when available, have the intrinsic advantage of permitting mathematical
manipulation and analysis of the equations involved, thereby providing the
application ot the great range of powertul mathematical optimization techniques
available in the rich literature of optimization theory (see, e.g.. (1] and [2]).

In the specific technology of queueing theory, the usual situation is that
closed-torm queueing techniques are confined to the characterization of singile
queues, or perhaps paraliel queues with parallel servers all operating at a single
service location. Most elementary queueing theory texts limit the development of
the subject to such situations, and do not endeavor to discuss networks of queues
at all. However, there is an extenswve literature on this subject which has been
evolving for about three decades, and has only recently found its way into
textbooks and large-scale applhcauons

Some of the eariiest work toward extending queueing theory to networks of
queues was done by R.R.P. Jackson (see [3]) in 1954. The main supposition
which allows queueing effects at one node to be visited in an analytically tractabie
way upon the activities at other nodes e the assumption that the future behavior
of the system as a whole is dependem on past behavior only in terms of the
current customer backiogs in the system nodes. Making this assumption tended
to pluce certain limits on the vanety of queueing protocols which couid be
modeled, and some of these Iimnas wall be discussed below. Substantial progre ss
was made after these early papers by vanous scholars, and the type of network in
which the future of the entire netwom aysiem could be determined solely from the
present state of the queues at all nodes became known as "product-form®
networks. A very significant paper n thia area was published by four authors (see
[4]). Baskett, Chandy, Muntz, anod Palacxoce. The paper pulled together some of
the disparate results in the area, and also extended the product-form queueing
model to a wide and coherently deecnbed set of conditions. Lemoine gives an
excellent survey of the technology in [8), and Lavenberg discusses the practical
computational aspects of the techrnque in Chapter 3 of his excellent textbook,
Computer Performance Modeling MNandbook, [6).

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
7

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

The exposition to be given in this section will follow the form, but not
necessarily the notation, of the BCMP paper. Also, the exposition in this section
will try to provide the reader with a sense of the scope to which the product-form
network theory can be applied, while leaving explicit mathematical development to
Appendix B.

It will, however, be necessary to introduce some symbolic notation. First,
suppose that

N = number of service centers (nodes)
in the system, and

R= number of classes of traffic.

These ciasses of traffic are distinct from each other in that they can follow distinct
routing schemes, and have distinct service time and arrival rate distributions at
the nodes. Routing is defined probabilistically in such a network by

Pi(.r). (j.s)]) = probability that traffic of class r, at node i
' will transit to traffic of class s, node j.

These are called routing transition probabilities, and are normally considered to
be expressed as an NRxNR matrix which has great convenience for
computational purposes. There is a simplification of notation possible here which
does not affect the applicability of the above equation, and that is to regard
customers of the same class at different nodes as being designated by ditferent

class indices. This evades the need to consider a matrix indexed by pairs, so we
can then write the matrix P[] as

Pli. j] = probability that a customer of class
i will transit to class j. (Equation 2 - 1)

Thus, routing permits traffic to move between traffic classes and service nodes in
a single transition. However, the fact that routing is probabilistic means that no
particular traffic entity travels any specific route through the system: the routing
paradigm permits statements about average channel utilization and expected
traffic flows along links to be made, but does not support a completely detailed
routing plan. This is the reason that closed-form modeis cannot replace
simulation for the purpose of examining the detailed effects of routing algorithms.

In most queueing situations such as this, certain traffic classes travel in closed
routing chains. l.e., not all possible transitions between traffic classes may occur,
and not all tratfic classes visit all nodes. In typical mathematical fashion, the
analyst can seize upon this opportunity to study the entire problem as a sequence
of sub-problems. Thus, without too careful a formal exposition, we define a
routing chain as consisting of a subset of traffic classes and a subset of nodes
such that the traffic classes only transit among themseives, and the traffic classes
invoived only circulate among the no-es in the subset. This does not say that
other traffic classes do not also pass through these nodes: also, if multiple routing
chains do pass through the same queues, the overall state of that queue can be
expressed from the analysis of the separate routing chains. In this way, the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
8

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

analysis of the entire system can be done by analyzing the separate routing
chains, and then extending these results to the interactions of the routing chains
in order to assess the complete network system. Thus we will first describe the
terminology and resuits associated with a single routing chain.

A routing chain is called glosed if the total count of customers in the chain
remains constant over time. Where this is not the case, the routing chain is gpen.
Closed systems are often used to model the processing interactions and delays in
a computer time-sharing system, where some constant number of tasks are
being “"simultaneously” served by several types of system servers (e.g., disk
access, printer access, terminal access, CPU access), and the same number of
jobs shuttle from one service to another. Computer system designers can judge
the expectations of processing delay and resource utilization for a steady-state
ioad of a given constant number of on-line time-shared jobs by formulating such
a closed network of queues. Open routing chains may have arriving and
deparnting customers, and thus one does not a prioi know what total number of
customers will be in the system at any moment.

We have progressed far enough now to state the most important
computational advantage of product-form networks. The "state”™ of a product
form network at any moment is (by earlier assumptions) given entirely in terms of
the lengths and compositions (in terms of numbers of customers of each
customer type) of the queues at the various nodes. l.e., the basic tenet upon
which the product-form of network analysis rests is that the tuture of the network
depends only on the present condition of the queues at all the service centers.
Thus, the state of the network is equivalent to the collective states of the nodes,
and the state of any node is entirely determined by the numbers of each class of
customer in the queue of that node. Thus, if Sy is an R-dimensional vector the
components of which represent the numbers of customers of each type in queue
at node p, then

(S1, S2, ..., SN)

represents the state of the entire network. If Pr{.}) represents the probability of an
event described within the brackets, then we may state that

Pr{(S1, S2, ..., SN)} = Pr{S1}Pr{S3}...Pr{SN]} (Equation 2 - 2).

This equation states that the probability of the global state of the system, as
represented by all of the individual queue vectors S; is equal to the product of the
probabilities of the respective queueing situations arnsing individually at the
saeparate nodes. l.e., there are no internodal effects and dependencies to affect
the analysis, and we may divide and conquer the analysis problem by focusing on
the behavior of a single node. The main result of the analysis is to provide
closed-form expressions for the values Pr{S;}). from which nodal response time,
link utilizations, path delays, and other standard queueing metrice can be derived.

Having reduced the problem to examining single nodes in a single routing
chain, we now taxonomize the types of queueing disciplines that may be treated
by this analysis. First, all arnvais to the network have the Poisson distribution, and
separate traffic classes may have separate arrival rates. The arrival mate for a
given traffic class is usually defined globally as a single Poisson process which is

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
o

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

then subdivided among the nodes by a constant probability distribution, but it is
equivalent to consider separate Poisson arrival rates at the individual nodes which
sum to the global rate (the former concepiualization is more practical in terms of
the mathematics of the model). The Poisson arrival rate to the system for any
customer class need not be constant: it can be an arbitrary function dependent
upon the number of customers of that class already in the system.

Of course, in a ciosed system, all arrival rates are taken to be zero. iIn an
open system, if there are arrivals, then there must also be departures; the
departure process is normally formulated in terms of a single "sink™ for each traffic
type, with traffic of that type being routed to the sink from each node via a routing
transition probability. (This is logistically equivalent to some means of allowing
customers to leave the system at individual nodes.) Thus the departure of traffic
from the system is easily encompassed in the routing transition probability
structure described by equation 2 - 1.

The final major element of the model has to do with aliowable queueing
disciplines and service time distributions. Product form assumptions can be
realized for the following four general types of queueing disciplines. (Some other
queueing disciplines have been shown to yield product formm networks, but only for
specialized topologies: e.g., see [7].)

The tirst queueing protocol permitted is the very common first-in, first-out
(FIFO) queue. This is the most commonly encountered queue, where customaers
are placed in the queue in the order of their arrival, and are served in order of
their arrival. Thus a newly arrived customer waits behind all previously arrived
customers, and is served only after all previously arrived customers have
completed service. Such a queue is illustrated in Figure 2 - 2. If a service node
has a FIFO queue, then all customers which pass through that node are subject
to the same exponential service time distribution.

ARRIVALS
NEUWEST OLDEST
CUSTOMER ® o o CUSTOMER
SERVICE
EXIT FROM
SYSTEM

Figure 2 - 2 -- The Firat-ln, First-Out (FIFO) Queue

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
10

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

The second type of queuseing protocol possible at a service node is the
processor-sharing (PS) mode of queueing. In this type of queueing, all
customers at the node simultaneously share the server. Thus, each newly
arriving customer receives immediate service, but the server accomplishes this
instantaneous response only by slowing down the service rate at which all aiready
present customers are served. Thus if the overall service rate is u, then when K
customers are present at the node each customer is served at rate k. This type
of queueing occurs in time-shared computer systeams, and is illustrated in Figure
2 - 3.

OLDEST 5 S
CUSTOMER I |
OLDEST 5| M S
CUSTOMER i U
L E
* T R ~ EXIT FROM
V “ SYSTEM
. A
N
. e C
O
U
CUSTOMER > |S

Figure 2 - 3: The Processor-Shared Queueing Discipline

Customers at a PS node can have distinct service rates, depending on their
customer class. The service rate distribution can be any probability distribution
with a rational Laplace transform. In effect, this means that the service operation
can be thought of as consisting of a sequence of exponential service operations,
each with independently determined mean, and with the possibility of the
customer exiting the service after any one of the service steps. This type of
service is depicted in Figure 2 - 4.

it a service operation of this type for customer class i contains only a single
service operation, the service time distribution will be exponential. In this case,
the only parameter of the service rate is ui, and 1/n;, the mean service time, can
then be an arbitrary function of the number of customers of type i at the service
center. Thus, uj can be expressed as a discrete function

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
11

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

mi(1), pi(2), ... mi@. ...

where the argument j represents the number of customers of type i at the node.

CONSECUTIVE EXPONENTIAL
SERVICE STAGES

CUSTOMER
ENTIRY

CUSTOMER
EXIT

Figure 2 - 4 -- Schematic of Laplacian Distribution

The third type of queueing permitted at a service node is called infinite server
(IS) queueing. In this case, the node always has more servers available than
there are customers present in the node. The delay through such a node is thus
strictly the service time delay associated with the customer class. The limitations
on the service time distribution in this case are identical to those for the PS node
described above. This node is illustrated in Figure 2 - 5.

IS nodes do not exist in real-world queueing systems, but they are usetul
when a single stage of delay is desired for a customer, with the delay being
independent of other customer congestion in the system. E.g., in a
communications system, a message which has waited behind other messages for
access to a channel may, at the beginning of its actual transmission, wait for a
channel! access siot to become available in a round robin token-passing
arrangement. This final short delay before transmission has nothing to do with
other traffic in the system, and can be conveniently modeled by the IS queue.

The final form of queueing which is possible for product-form service nodes is
last-come, first-served (LCFS) queueing. In this type of queueing, any newly
arrived customer will preempt a customer already in service, and service for the
preempted customer will then be suspended until the new customer has
completed service. When a customer compietes service, the most recently
preempted customer resumes searvice. This type of service is evident, for
example, in computer operating systems, where an interrupt to a processor
causes the processor to suspend service to the present task and tum attention to
servicing the interrupt. If another interrupt occurs during the service of the first

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
12

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

AST __ 5| sERVER

CUSTOMER
2ND _____ 3| SERVER
CUSTOMER
[] []
[] |
o o

—_— EXIT
SYSTEM

LAST
———> | SERVER
CUSTOMER

SERVER

Figure 2 - 5: Infinite Server Queueing

interrupt, then the latter interrupt preempts the present interrupt. (Of course,
many computaer systems now have a pnoritized interrupt structure, so that strict
LCFS queueing wouid not apply.) LCFS queueing is illustrated Figure 2 -6.

The service time distributions posaible for LCFS queueing are identical to
those for PS and IS queueing. However, there is an added subtliety here,
because preemptive queueing processes may or may not conserve the work
already done on a customer. In the case of product-form LCFS queueing, the
preemption is somewhere between conserving and non-conserving. Specifically,
if the preempted customer has & mutuple-stage service time distribution (see
Figure 2 --3), then the customer e returned to service at the beginning of the
stage in which preemption took plece | ®., the service already performed in
earlier stages is preserved al preemption, but the service already performed at
the current stage is lost. A tinal observauon is that, for one-stage service time
distributions, it follows that the preemption ts non-conserving.

This effectively completes the cescnption of the general topological and
queueing models available for proouct form networks of queues. A given service
center in such a network may apeply any of the above four forms of queueing. and
the flow of traffic, although stochastc. permits a customer of any class at any
node to transit to any class and any node It shouild be pointed out that

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
13

MULTIMEDIA NETWORK DESIGN STUDY — FIRST YEAR FINAL REPORT

CUSTOMER
BEFORE
PREVIOUS

ANOD—-W

PREVIOUS
CUSTOMER

N

ENTER v EXIT
SYSTEM LATEST SYSTEM

CUSTOMER,
IN
SERVICE

v

~

Figure 2 - 6: Last-Come, First-Served (LCFS) Queueing

customers can be effectively "deterministically” routed in this system by setting the
appropriate transition probabilities equal to one. Also, it should be mentioned that
the "service node™ as described here is a mathematical artifact in terms of which
the product form theory has been developed. In practice, the concept of a service
node may involve several steps of processing of traffic in series and parallel
combinations of the product-form service nodes. Thus, an actual
communications network node may not be realistically reducible to a single node
of one of the above types, but the delays and actions of the communications node
may be adequately expressible in terms of a combination of the product-form
nodes.

For example, suppose that we have a multimedia node at which messages of
different types arrive. This node may be both processor-limited and bandwidth-
limited, so that the nodal processing slows in proportion to the traffic in the node,
and the traffic also backs up in queue at the output, waiting for service on the
various media channels available . Such a node might best be modeled by a PS
queue, followed by a FIFO queue.

2.3 Computational Considerations for the Closed-Form Technique
The present discussion would be incomplete without some reference to the

practical computational complexity of applying the product-form network-of-

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
14

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

queues model. The difficulty associated with practical computation depends on
whether the network is an open or closed network. The reason for this is that a
fundamental quantity by which expected nodal loading, and thus all derived
performance measures, are guaged is the “relative throughput™ of each traffic
class entering a node. The relative throughputs of a given customer class at a
node is related to the routing in the system from all other nodes by the equation

yd = Plo.d] + 2 ycPle.d] (Equation 2 - 3)
ceC

where the y4q are the relative throughputs (one for each customer class/node pair
in the network), and P[0,d]) represents the arrivals to the class/node of new
customers of the class d. The summation is taken over C, the set of aill customer
classes defined for the network. (The meaning of customer class follows the
convention that each node/class combination is a distinct class, as was introduced
in connection with Equation 2 - 1.) The situation now becomes quite different for

open and closed networks, so these two situations will be treated separately in the
following subsections.

2.3.1 The Computational Process in a Closed Network

The greatest computational difficuity arises from the fact that in a closed
network, the quantities P[0O,d] are all zero because there are no new arrivals to
the system. The set of equations 2 - 3, with the quantities P[0,d] all set to zero,
are linearly dependent because the coefficient matrix of the equations is
Markovian and therefore has the sum of all columns equal to a vector of 1's. The
result is that the relative throughputs, when soived for closed-form networks, are
determined up to an unknown factor, i.e., the. true class throughputs in the

system constitute a vector which is a scalar muitiple of the relative throughputs.
The relationship is thus

(Y1, Y2, ..., YL) = (ayq. ay2, ., oylL) (Equation 2 - 4)

where
Yi = the absolute throughput for class i, and
a = the unknown constant relating absolute and
relative throughputs.

The unknown value o is called the normalization constant. The process of

determining o constitutes the bulk of the computationai etfort required to make
the algorithm computationally tfeasible.

The unknown scalar a can be determined using the relative throughputs, by
summing the values of the distribution

Pr{(S1, S2, .., SN))} = Pr(S1}Pr(S2}...Pr{Sn}

(see Equation 2 - 2) which theoretically must add to one. When the factors on
the right are individually computed, using the relative throughputs, and the
probability density in equation 2 - 2 is summed over all possible values of the

nodal state vectors S S SN. the resulting sum will be in error by exactly the
factor o..

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
15

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

Although straightforward enough in concept, this summation can be very
large, since it effectively involves enumerating all possible combinations of queue
backlogs jointly considered over all nodes. (However, since there are a fixed
number of customers in a closaed network, the computation is not infinite.)

A great many of the papers in this field have been devoted to decreasing the
computational complexity associated with this step. Three main techniques are
prominent, each of which may be favored under certain circumstances (see [6],
pp.- 145 - 151 for an excellent exposition of these techniques). The three
techniques are known as recursion, mean value analysis, and the local balance
algorithm for normalizing constants. Two very recent major algorithmic
approaches to the computation of normalization constants are the RECAL
algorithm described in [8) and the DAC algorithm discussed in [9].

2.3.2 Computational Process in an Open Network

The great difficulty involved in computing normalization constants for closed
networks disappears completely for open networks. That is because in Equation
2 - 3, the arrival rates are non-zero, and so the linear equations are no longer
singular. Consequently, the main computational difficulty is simply to solve the
linear equations represented by Equation 2 - 3. This effectively can be done by
any of a large number of efficient matrix inversion techniques. Generally, the
major limitation of the technique for the open network is the size of the matrix of
routing transition probabilities. Bear in mind., however, that where the customers
in the system break into a number of disjoint routing chains, the full set of
equations represented by Equation 2 - 3 also decomposes into smaller sets of
disjoint independent equation sets. in the types of network applications that we
will pursue, we will normally be dealing with open networks, decomposable into a
number of disjoint routing chains (in tact, one chain for each traffic type).
Therefore, the computational effort described in this section need not reflact the
full complexity of the network in a single large set of linear equations.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
16

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

3.0 CLOSED-FORM MODELING APPLIED TO MULTIMEDIA COMMUNICATION

The previous section of this document gave the reader a survey of the
applicability of the closed-form, network-of-queues modeling techniques, and of
the computational complexities invoived. Based on that survey, the present
section will examine the multimedia communications network, and provide a
modeling paradigm for that network which utilizes product-form network-of-
queues techniques.

Before launching into this deveiopment, it will be worthwhile to clearly state that
the purpose of this modeling effort is to provide a means of studying the
multiplexing of traffic types on the media types in a multimedia network in such a
way that a fully integrated multimedia network (as opposed to a collection of
separate single-medium networks sharing common nodes) results, with optimum
use of the media relative to the characteristics of the traffic types.

A final point that should be mentioned is that the model developed here is in
effect a prototype, and is kept fairly simple for that reason. It treats the network in
a rather simplified form, and is limited in scope to the examination of traffic
loading issues in the system. Since this is the first years output for a three-year
study, the prototype will be expanded in many ways to serve a more detailed set
of issues in muiltimedia networks. To what extent this prototype can be expanded
in scope will depend on further experience gained with the prototype and with the
computational efficiency of the prototype. This can only be ascertained after the
prototype has been exercised over some range of examples in the second year of
the study.

This section includes some mathematical development which is essential to
understanding how the closed-forrn modeling paradigm has been adapted to
multimedia communications networks. The mathematics developed here is not
part of the general mathematics of product-form networks of queues; it was
developed explicitly to correctly represent multimedia communications concepts in
terms of the product-form model. A user of the MMDESIGN program must
understand the concepts in this section in order to intelligently apply the
MMDESIGN program to design issues.

3.1 The Multimedia Network Node

A multimedia network node will be characterized for our purposes as a node
which accepts traffic from other nodea, and on various input links, and can then
pass traffic from itself to other nodes along various links. The links entering and
leaving the node can be supported by various media and modulation types, and
the traffic entering and leaving the node can be of different types. The main
distinctions which will be drawn between media in this model will be the
bandwidths which each medium mahkes available for traffic, and the signal
degradation properties of the mediurnvmodulation pair as it effects each traffic
type’'s error rate. The main distinction between traffic types that will be drawn will
be the differing error rates induced by the various media, and the mechanisms by
which erroneous traffic is handled.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
17

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

Internal to the network node, we must identify a queueing discipline which is
compatible with those supported by the product-form model, and is ailso
compatible with our desire to model tratfic flow realistically in a communications
system. Of the four queueing disciplines available (see Section 2.2), the FIFO
discipline is the most reasonable match to ordinary traffic queueing. lLe., traftic
leaving a node may need to be queued because the bandwidth available on some
medium is less than required to immediately service the current tratfic offered.

However, an irritating complication arises it we simply try to model each
medium leaving a node as a singie FIFO queue, and that is that the FIFO
queueing discipline for product-form networks constrains all customers entering
the queue to have the same service time distribution. This would be acceptable if
a single traffic type were to be matched to each medium, but it will not do it we are

to accurately reflect the transmission of multiple types of traffic on a single
medium.

The remaining queueing disciplines allowable for product-form networks permit
separate customer classes in the queue to have separate service time
distributions. These three queueing disciplines however (i.e., processor sharing,
infinite servers, and last-come, first-served) do not intuitively map well into our
conceapt of traffic queueing at a node, and would not provide an applicable modael.

The consequence of all this is that the FIFO queue should somehow be used,
but should be limited to serving a single traffic type. Fortunately, this is possible
to do in a credible way, and this will be the subject of the next section.

3.2 The Multimedia Network Composite Channel

As was mentioned immaediately above, we cannot model separate media
channeis as separate queues within the constraints of the product-form model
unless we attribute the same service time distribution to all traffic using that
channel. This would seem to preclude the muitiplexing of muiltiple traffic types
(each of which may have its own distinct service time distribution) on a single
channel. In order to circumvent this problem, we will instead regard a channel as

carrying a single traffic type, and we will in etffect multipilex the channels for the
traffic type.

In order to explain this concept, we must introduce some notation. Given a
single traffic type j at a specific node i, that traffic type is to be multiplexed on the
various media available for transmission. Define a trafficymedium multiplexing
vector as

Mil = (mily, milz, | mibr),

where

mijk = the proportion of medium k to be devoted to
traffic type j at node i, and

T = the number of media available at the node.

Tratfic type } at node | will be apportioned as shown on the various available
media. This means that the proportion miik of medium k is set set aside

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
18

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

exclusively for traffic of type j.

In effect, this defines a composite channel for traffic of type j. The bandwidth
of the composite channel is expressible as the sum of the proportions of the
bandwidths of the media channeis partially supporting the traffic type. To be

precise, if medium k has bandwidth Bik at the node i, then the total bandwidth
allocated to traffic type j is

T

B = > milgBig (Equation 3 - 1)
k=1

The advantage of the composite channel concept is that it presents to the traffic
type in question a total bandwidth available, as per the muitiplexing scheme of the
node, and it allows the representation of the separate traffic types as traveling on
separate channels. In this way, all traffic entering a composite channel is of the
same type, i.e., has a single service time distribution, and so the queueing
discipline associated with the composite channel can be taken to be FIFO.

The composite channel must also be considered from the standpoint of error
processes acting on traffic. This will be examined in the next section.

3.3 The Error Process for the Composite Channei

The composite channel comprises, for its related traffic type, a collection of
fractions of media channels, each of which may have different error properties
relative to the tratfic type. The composite channel error rate is therefore
dependent on the specific proportions of the various media available to the traffic
type for which the composite channel is defined.

Before carrying this reasoning to a precise expression, it will be useful to
quantify the error process somewhat more than it previously has been. For each
medium/modulation combination, there is some form of signal degradation
representing the usual operational characteristics of the medium s0 modulated.
Whatever form this degradation takes, it will affect any specific traffic type to an
extent depending on the error-correcting mechanisms built into that traffic type.
For the purposes of the current model, we will assume that all traffic types can bs
thought of loosely as "messages™ (the term “packet” seems too dangerously
specific), and for each mediumaraffic type combination, a missed message rate
(MMR) will be determined based on a careful analysis of both the
medium/modulation and the traffic type.

Thus for traffic type j and medium k, we will denote a missed message rate
(MMR) by Ejk- The composite channel can be assumed to carry traffic in direct
proportion to the band width allotted per medium type, 80 the composite error rate
for traffic type | at node i should be expressed as

T

Ej= z m'ikEjk (Equation 3 - 2).
K= 1

This error rate is thus interpreted to be an overall missed message rate for the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
19

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

composite channel. The average missed message rate for all traffic of this type
traveling on the composite channel will correspond to this MMR.

3.4 Accounting for Error Correction Traffic

The subsection above dealt with determining the error rate for a composite
channel relative to the traffic type that will flow on that channel. The error rate will
be applied to determine how many messages (in the present circumstances, the
term "messages” will be regarded as a generic term for separate traffic entities)
transmitted on the composite channel will be received in unacceptable condition.
When received traffic is unacceptable or unusable, there are generally three
possible responses to the situation:

(1) the traffic is discarded, with no need for a repeated transmission,

(2) the traffic has substantial forward error correction built in, so the
receiving node can resolve the problem with no further use of
communications links

(3) the traffic must be retransmitted.

For the purposes of the present model, we are only concerned with processes
that increase the burden of the available media. Therefore, we need only
concern ourselves with error handling of the third kind. For such error handling
processes, we shall assume that each message subject to error correction, when
received correctly, is acknowiedged by the receiving station. This
acknowledgement will generally consist of a short message returned to the
transmitting node using the same composite channel. If the received message is
not correct, then no acknowledgement is sent.

There are several ways in which the mechanisms of such error handling could
be modeled. In keeping with the philosophy of steady-state modeling, we must
bear in mind that the purpose of this model is not to folilow specific tratfic entities
through the system, but rather to guage overall traffic congestion and delay
through the system. (Actually, since routing in the product-form model is not
deterministic, there is no way to account on a message-by-message basis for
erroneous traffic transmission.) Therefore, so long as the additional traffic load
imposed by error correction is modeled, it is not necessary to actually implement
flow paths representing the handling of acknowledgements and retransmissions.

What additional traffic loads are imposed by this error correction scheme?
First, there is the additional load arising from the need to transmit repeats of
erroneous traffic along the original path. Second, there is the need at the
receiving end to generate and retum acknowledgements to the transmitting
station for correctly received traffic entities. We will account tor all effects of
erronecus messages by adding an extra load at the transmit node which is
equivalent to the additional traffic it must transmit due to the error process. Since
the extra load occupies the same FIFO queue as all normal tratfic tor the attected
composite channel, the overall effect on the system is an additional amount of
delay in the node due to the need to requeue and retransmit some fraction of the
channel tratfic. For the acknowledgement process, the extra load is imposed on

AIRMICS/H2RRIS CONTRACT DAKF11-88-C-0052
20

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

the receiving node, since it must use some of its transmit capacity to queue and
transmit an acknowledgement.

To adequately account for these added traffic loads, it is necessary to analyze
the intensity of traffic flow for the traffic type in question, and then use that
intensity figure to calculate the extra traffic loading imposed on the queues in both
the transmitting and receiving node. We will do this in the two subsections below.

3.4.1 Erroneous Traffic Effects at the Transmitting Node

it we are dealing with a specific traffic type t, the added load at the transmitting
node is a tunction of its mean length i and the missed message rate Et for the

traffic type. In particular, for every original message transmitted, the total load at
the transmit node is just

St = (1 - Ep) + 24(1 - EPDEy + 3h(1 - EPER + . ..

This infinite summation does have a closed form for 0 < Ey < 1, and yields

St = h (1-Ep ! (Equation 3 - 3)

In effect, this is the expected length of all tratfic generated at this node associated
with the original message. By lengthening the ncminal traftic length | to this
value, we have imposed the desired additional load on the node.

3.4.2 Erroneocus Traffic Effects at the Receiving Node

We will handle the effects of acknowledgements on the tratfic process by also
increasing the length of each type t message handled to account for the
acknowledgement it requires back to the previous node. However, not ail traffic of
type t which is in queue at the receiving node has actually been received from
other nodes. l.e., the tratfic in queue at the node is generally a mixture of
received traffic, and traffic originated at the receiving node. Obviously, the node
need not generate acknowledgements for traffic internally originated, therefore
only some fraction of the type t traffic actually imposes a load on the node. Thus,
in order to assess the load at the node correctly, we wish to determine the fraction

of traffic of type t originated in the node. relative to all type t traftic processed by
the node.

This is not actually a difficult thing to do. since we have availabie the relative
throughputs from Equation 2 - 3 . In terms of the notation ot Equation 2 - 3,
suppose that P[0.d] represents the ornginations for traffic type t, and that yq
represents the relative throughput of traftic type t at the receiving node. Then the
fraction of traffic which represents local onginations of traffic type t, compared to
all traffic of type t processed by the node |is

v = PO, d)Yyd (Equation 3 - 4).

Then the average length for all type t messages processed by the node is given

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
21

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

by

St=wvillg (1 - Ep) 1] + (1 - wved) g (1 - E!)'1 + at] (Equation 3 - S5)

where
ay = longth of the required acknowledgement for traffic type t..

Thus, the overall additional load imposed by the error process is visited on the
system effectively by increasing the length of each message to account for its
retransmissions by the system, and the acknowlegdgements sent on its behalf.
Thus given the quantities k , E;y , and a;y , we can calculate for each node (note
that it is a function of each individual node's traffic type t throughput and

origination rate) the length S; for the traffic of type t at that node. This effectively
determinas the service rate tfor that tratfic type at that node.

Suppose that we are dealing instead with the situation where acknowiedge-
ments are sent “out-of-band”, i.e., on a channel other than the one which carries
the original traffic. Then the additional load on the original traffic channel revers
back to the value S';. The remaining part of the traffic generated is the out-of-
band component associated with the acknowledgement process, i.e., just the
load associated with the generation and transmission .of the correct proportion of
acknowledgements tor the traffic type. That will be given by the difference

St - St

3.5 Computing Transmission Delays through the Network

The final remaining topic which is to be considered in this section has to do
with the means by which path delay through the network can be computed. For
the open network product-form model, the computation of all nodal performance
metrics is very straightforward once the linear equations (Equations 2 - 3)
determining the reiative throughputs have been solved. One of the nodal
perforrmance metrics available is the mean nodal response time (i.e., queuseing
delay plus service delay) for each traffic type passing through the node. (See
Appendix B tor the dernvations of system peformance parameters from the relative
throughputs.) In order to compute the expected delay for any traffic type along a
path through the network, one can add the mean nodal response times for the
nodes along that path.

However, if what is desired is an average delay for traffic over a r. .ultiplicity of
paths, then one cannot simply take the unweighted average of the path delays
described in the above paragraph. That is because one cannot assume that
equal amounts of the traffic of interest flowed via the various paths. Thus, we
must find a means to account for the relative proportion of traffic that flowed along
any one path among a collection of paths of interest.

This can be done by reference back to the relative throughputs defined by
Equation 2 - 3 . Spaecifically, let

P—<31.82....,sn(p)>

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
22

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

represent a path through the network, with s1 being the first node, s being the
second node, etc. The expected path delay along this path for traffic type t will be

1the sum of the expected response times tor traffic type t at each node inciuded in
the path. Let

D¢ (P) = expected delay for traffic of type t traversing path P.

Then if we have another path Q connecting the same origin and destination, a
constant o must be such that the expected delay for all type t traffic traveling
between these endpoints on both paths can be expressed as

E[Di(P or Q)] = a D(P) + (1 - a)Dq(Q).

We determine the constant a from the relative throughputs of the nodes (for traffic
type t) and the routing transition probabilities. Beginning at the next to the last
node on path P, the propcrtion of all type t traffic through the node destined for
node sn(p) is given by the routing transition probability Pisn(p) - 1. Sn(p)l:
multiplying this by the relative throughput yt n(p) - 1 of node sn(p) - 1. ie.,

Plsn(p) - 1. sn(p)] Yt.n(p) - 1.

gives a relative measure of the type t traffic traveling this link. Now, from this
quantity of tratfic, we wish to know what portion arrived at node sp(p) - 1 from
the preceding node, sn(p) - 2. Applying the same reasoning to this situation, we
determine a measure of the relative traffic of type t at node sn(p) - 1 from node
&n(p) - 2 as being

Pilsn(p) - 2. 8n(p) -1l Yn(p) - 2,
where yy n(p) - 2 's the relative throughput of tratfic type t at node sn(p) - 2.

This reasoning can be extended inductively backward to the first node of the path,
with a similarly defined factor applying at each node. Thus a measure of the
relative amount of traffic flowing from node s4 to node sn(p) is given by the
product

n(p) - 1
Wi (P) =TT Pusi.sisilmi- (Equation 3 - 5)
=1
Thus ii the expected delay for type t traffic is to be computed for travel along any
of the muitiple paths, say P11 P it will take the form

n n

E(Dy(P1 or ... or Pn)] = (X Wi(POHEID«P)])/ (2 Wi(Pi)) (Equation 3 - 6).
iem i- 1
This effectively completes the discussion of model development which was the
main subject of this section. All of the technical results presented above are
speacific to this application, and are generally not part of the generic results
derived in product-forrmn network-of-queues expositions. Appendix B provides a

tull accounting of the generic mathematical treatment of the open product-form
network which is sufficient tor our purposes.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
23

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

4.0 INSTRUCTION MANUAL FOR THE MMDESIGN PROGRAM

The main goal of this years study effort was to develop the mathematics
nesded to create a credible model of the multimedia network within the product-
form network-of-queues framework, and to then implement the concepts in a
computer program. The MMDESIGN program developed for this purpose is
effectively still a prototype, and will undergo considerable generalization and
improvement in the next year. Therefore, the content of this section should not
be taken as a permanent record of the capabilities, form, or user-interface
associated with this program. Many of the features described in this section are
still in development, and others are not yet fully debugged.

The specific objective of this program is to provide an analytical tool enabling
communications network designers to assess the tradeoffs involved in assigning
various traffic types to various media supporting a multimedia network structure.
The tradeoffs relate to the greater or iesser ability of a given medium to service
any particular traffic type within the constraints of traffic degradation and delay.
Where some media are superior to others relative to these properies, some
portion of the traffic may need be relagated to the poorer media. This program
will aid analysts in determining the steady-state effects of traffic multiplexing on
the media.

MMDESIGN in its present form does not performm any automated optimization
of routing. The user can enter the information defining the network, and can then
derive and examine the steady-state performance of the system. The primary
metrics provided are the expected response times (i.e., queueing delay plus
service time) for each node and traffic type. the expected delay times for any
traffic type traveling any specific path or collection of paths &ll of which have the
same origin and destination.

This program is quite data intensive, since it will require enough information to
completely specity all routing in the network, all traffic types (each of which has its
own routing structure), and all media Thus this program is not "user friendly”, in
the sense that one can get practcal results from its use in short order. To fully
speoecifty a large network to the level required for this program could require
substantial tedious data input. However. once that data has been supplied, it is
possible to examine many trathc mufuplexing scenarios with much less
expenditure of time and much greeter conhdence in the results than would be
available through simulation.

The foliowing subsection will be cevoted to explaining the meaning of each
data input required to fully defne & mutimedia communications network to the
program.

4.1 Explanation of Program inputs
The modeling techniques deecnbed in Section 3 permit the network analysis

done by MMDESIGN to be done indiwwvidually by traffic type. That is because the
channel multiplexing technique used to create a composite channel makes the

AIRMICS/HARRIS CONTRACT DAKF11-88-CC-0052
24

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

traffic types independent of eachother, except that each traffic type has a limited
amount of the total media bandwidth available to it, associated with which is a
composite traffic service rate and traffic error rate.

Because this is the case, the data entry process for MMDESIGN is organized
primarily around traffic types and the specific information associated with a single
traffic type. Furthermore, the information input scheme is such that analysis can
proceed for a single traffic type once all of the data associated with that traffic
type has been entered.

Since the amount of data to be input for an entire network can be very
extensive, the program organization only keeps data for a single traffic type in
computer memory at any time. This is of great advantage in the present IBM PC
implementation, since most IBM PC's or equivalents have less than 1 megabyte of
memory capacity.

Data input for any network design analysis is automatically stored to a file as it
is entered. This tile can then be invoked in a later session and used as is for
further analysis, or edited if it is desired to try a different, but similar network
configuration. There is one limitation built into the data storage retrieval process
which was unavoidable, given the constraint on available memory, and that is
that, although almost any of the originally entered data associated with a network
can be edited, the overall "size” of the network must remain the same. In this
case, the size of the network is a function of the number of nodes, the number ot
traffic types, and the number of media types input in the network definition. Once
these three values are selected, a new network obtained by editing the present
network cannot change any of them. (A larger network can be defined only by
going through the full network creation process again.) Thus, if one defines a
network, and anticipates that the network later may involve more traffic types,
media, or nodes, one should select the maximum values expected for those
numbers at the initial creation of the network. Doing so does not measurably add
to the workioad associated with data entry until such time as the network definition
is actually expanded.

The inputs to the program during network creation will now be discussed, in
the order in which they are input. First are the global parameters, so called
because they are not associated with any single traffic type; these are

a. the total number of communications nodes in the network,

b. the total numbsr of media types in the network,

c. the total bandwidth (in Kbits/second) for each medium type,

d. the total number of traffic types in the network.
Following the entries above, the block of data entries discussed below are all
associated with a specitic tratfic type. The user enters these parameters in
consecutive blocks of entries, with all entries in a given block being associated
with a single traffic type. After the data tor any traftic type has been entered, the

user may exit the network creation process and proceed to the analysis portion of
the program for the traffic types aiready defined. The tratftic type data entry

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
25

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

comprises
a. the network-wide traffic armrival rate for the traffic type,
b. the mean message length for the traffic type,

c. the length of the acknowledgement for the traffic type (enter O if no
acknowledgement is used)

d. a collection of missed message rates for this traffic type, one for each
medium on which it will be transmitted,

e. a collection of local arrival rates, one for each communications node in the
system (these rates correspond to the probability distribution by which

the global arrivals for a traffic type are subdivided, as explained in
Section 2.2),

f. station traffic multiplexing vectors by which the composite channel for the
traffic type are defined (see Section 3.2), one multiplex vector being
required for each node in the network,

g. the network routing transition probability matrix P[i, j] for the traffic type,
i.e., the defined routing in the system may be varied by traffic type.

The quantity of data required to define a large network is extensive, especially
since the items e. through g. must be entered for each tratfic type, and some of
those items (especially the station multiplex vectors and topology routing matrix)
may require substantial numbers of individual entries. However, there is available
in the program a copy feature that allows the most voluminous data structures, if
identical for different input cases, to be copied from previously entered data. E.g.,
if, for a given traffic type. all station traffic multiplexing vectors are to be identical,

then the copy function allows the analyst to evade a very substantial amount of
data entry.

A final data entry process, which is decoupled from network creation/editing, is
associated with the determination of the paths over which the model is to compute
traffic delay. The inputs in this case specify to the program which network paths
are of interest to the user in computing path delay through the network. The user
may in effect enter sets of paths, and the final performance output for the
program will compute the expected delay for each tratfic type along those paths,
with the dalays computed being averages taken over each path set. The path
data need not be entered at the time that the network data described above is
entered. The user can ener network definition data, and compute aill nodatl
metrics of interest, if so desired, before proceeding to evaluation ot path delays.
All path data is entered under a separate menu function "Paths”, at a time of the
users choosing. The path data entered is

h. number of sets of paths to be defined,

i. a path description, entered as a sequence of nodes (interpreted as from
origin to destination), and the path set in which it is to be included.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
26

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

As is the case for all network definition data, the path data is stored to disk,
and can be recalled and edited at will in association with the network data defining
the network.

A final point concerning the total aggregate of input data is that it is possible to
enter data in 80 complex a model as this which is mathematically inconsistent.
There are four possible forms of inconsistency , namely,

1. the possibility that the row sums of any routing transition probability matrix
do not equal 1 (the row sums are probability densities, and so must add
to 1), associated with data entered under item g. above,

2. the possibility that the local arrival rates for a traffic type do not sum to
one, associated with data entered under item e. above.

3. the possibility that more than all channel bandwidth for a given media type
might be allocated to the wvarious traffic types, associated with data entry
under item f{. above,.

4. the possibility that a defined path, as entered by the user in connection with
item i. above , is not in fact supported by the media routing
transition probability matrices for any of the traffic types.

There are "Verity™ utilities provided in the program to assist the user in
checking that each of the above data types is consistent. A verification function is
automatically invoked at the end of a network creation session, to inform the user
ot any ditticulties detected relative to items 1. to 3. above. That utility can also be
invoked by the user after any network editing, in order to insure that previously
consistent data has not been made inconsistent by the editing process.

Of course, there are other possibilities for what amounts to inconsistent data
entry, such as entering parameters which are obviously out of range, or which
create hopelessly large tratfic ioads in the network, There is no range checking
for such data errors in the program.

4.2 Program Organization and Menus

This subsection will describe the user interface to the MMDESIGN program,
and will explain each program function in detail. h is important to reiterate at this
point that MMDESIGN is a prototype program, and will evolve substantially over
the next year of this study. Therefore, the material in this manual concerning
program interface and function is interim information.

4.2.1 User Interface Format

The MMDESIGN program is entirely menu-oriented. It consists of a main
menu which requires single keystroke responses from the user, and several
submenus associated with main menu commands. The general format ot all
menu lines is the same: each command on a menu line is written in the form

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
27

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

XK (xxxxxx ",

and the user must enter the first letter of the command (in either upper or lower
case) , followed by the "ENTER" key. This results either in the presentation of a
submenu or specific prompts for data entry associated with the command. In
general, all possible user actions are met with clear prompts for the appropriate
action.

The other major aspect of MMDESIGN screen format is the division of the
screen into two portions. The top portion comprises about one-fifth of the total
screen, and provides a status/navigation window to the user. This window
displays at any time the current menu level at which the user is active (shown
hierarchically from the top menu), as well as the name of the network file and the
traffic type currently under investigation. H no network file has been opened, then
the name displayed is "Undefined".

The lower portion of the screen is the user/program interaction screen, and
effectively functions as an ordinary terminal interface, with data scrolling off the
top when the screen becomes full, and new data is entered at the bottom.

The program contains, together with the verify functions, a number of other
warnings indicating fatal problems, such as an inability to open a requested file.
Warnings of this type are presented in blinking red text, and are preceded by a
short tone from the computer speaker.

4.2.2 Interpretation of the Menus

In this section, each of the MMDESIGN commands available through the
program menus will be explained. Since the menu structure is hierarchical,
menus at lower levels may be referred to with simuitaneous reference to their
ancestors in the hierarchy, where that improves the clarity of the presentation.
Such references will take the form “PARENT/CHILD/GRANDCHILD/...". In this
notation, the main program menu will be referred to as "MAIN". While reading to
the material below, the reader may find it helptul to refer to the template in
Appendix A which provides a view of the full hierarchical menu structure of the
MMDESIGN program.

The MAIN menu is presented as the following line:
" N(ew, C(reate, E(dit, P(rint, R(ecall, T(hruputs, P(aths, M(etrics, Q(uit: "

To facilitate document organization, the discussion will be broken into
separate subsections below. I should be noted that a thorough reading of the
following subsections is mandatory before attempting use of MMDESIGN,
because many essential details of program operation are embedded in the
following discussion, and may effect the understanding of commands other than
those under which they are introduced.

4.2.2.1 The "N(ew™ Command

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
28

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

In order to perform any actions on a network, the user must supply a network
name to the system. This name is the same as the filename in which the network
data is to be stored, but the i'ser does not supply the extension to the filename. In
effect, the network will create three files files with the same root name, but
different extensions. These three files will be

1. "NetworkName.top™, which contains the topology and network definition
data associated with data entry items a. - g. discussed in Section 4.1.

2. "NetworkName.thp”, which contains the relative throughput data for all
traffic types defined by the user,

3. "NetworkName.pth™, which contains the path sets associated with data
antry items h. and i. discussed in Section 4.1.

These three files will be stored in whatever the current DOS directory was at the
time of program initiation. When there is a need for the program to open these
files, the program looks only in the current directory , i.e., the directory that was
active at program initiation, or any other directories made available by the DOS
"PATH" command.

In general, the program will prompt the user for a network file name if one has
not been defined and the current requested action requires one. Once that name
has been supplied to the program, it remains the current network file for all turther
actions uniess the “N(ew" command is invoked. The "N(ew” command is the
means by which the user can change from one network file to an unreleted one,
if that is desired. Note that invoking the new command does not actually store or
retrieve any data to memory, but only establishes that all further actions will refer
to a different network file. The means by which data storage is accomplished in
the program prevents any loss of data in any event: all relevant data for a network
analysis is always stored as soon as it is created, so that errors on the part of the
user concerning possible loss of data are minimized.

4.2.2.2 The "C(reate™ Command

The "C(reate” command is used when a new network, not previously defined
and stored to disk, is to be created. If no network name has yet been defined via
the "N(ew” command, the user will be prompted 1o supply a network name. If a
previous file of the same name already exists in the active directory on disk, then
the user will be warned, and given the option to discontinue. (Continuing at this
point will erase the previous file of the same name already on disk.) Once the
filename has been selected, the “C(reate" function steps the user through all data
entry associated withthe full definition of a network structure, with data entry
being required for items a. - g. in Section 4.1, and the order of entry being in the
order indicated.

The data needed to define a large network can be quite voluminous, so
MMDESIGN provides cenain shortcuts to the user to eliminate the entry of
redundant or assumed values. This applies specifically to the following types of
data.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
20

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

1. Entry of error rates for all media and a specific traftfic type can be
eliminated if all such entries are identical with those for a previously
defined traffic type. MMDESIGN asks if the current entries are like those
for a previous traffic type, and if so, allows the user to input the traffic type
index only. Then the previous error rate data is copied to the current
traffic type.

2. Local arrival rates for the traffic type, i.e., the specific probabilities that a
newly originated message will be associated with a given node, can also
be copied from one traffic type to a later traffic type, by the mechanism
described above.

3. The multiplex vectors, by which the composite channel for a given traffic
type is defined (data item {. of Section 4.1) can be copied from one traftic
type to another by the mechanism described above.

4. The topology of the network also is unique to each traffic type (i.e., each
traffic type may adhere to a separate matrix of routing transition
probabilities), but the routing matrix of a previous traffic type can be
copied to the current type by the mechanism described above.

A final data entry economy is associated with the entry of specific routing
probabilities for the routing transition probability matrix associated with a traffic
type: namely, all entries of the probability matrix are initialized to zero, so the
user need only enter the data associated with actual links in the network. For
those data entries required, data is entered on a single line, as the origin node,
destination node, and probability, in that order, separated by spaces and
terminated by a carriage return.

The "C(reate” command steps the user through the input of all required data,
looping through the traffic type speocific data until all traffic types have been
defined. When the data entry prooess 8 complete, it automatically verifies the
consistency of the data, and provides & screen warning if any inconsistencies are
found. This screen warning does not pinpoint the nature of the data inconsisten-
cy. however: the user should invohe the “MAIN/Edit/Verity™ command in order to
get & detailed account of where the moonsistencies were found.

A final important point is that the weer need take No action to insure that a
created network definition is stored w ceak The storage process is carried out
simultaneously with data entry. e~2 «» eutomatically completed and the file closed
at the termination of network oreston
4.2.2.3 The "E(dit" Command

Invoking "E(dit” at the MAIN me~ teve! confronts the user with a new menu,
"E(ct, Vienty Q(uit::"
The "MAIN/EdIVE(dit" command » weed to modity a previous network definition

stored in a network file. The file 10 be eaed will be the current one, as shown in
the Navigation/Status window, or, i none has been identified, the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
30

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

"MAIN/EdiVE(dit" command will prompt for a file name. All of the network
parameters in a file may be modified, with the exception of the number of network
nodes, the number of traffic types, and the number of media types. (A later
version of MMDESIGN will permit modification of these parameters also.)

invoking the "MAIN/EditV/Edit®" menu results in yet another menu of the form

= Edit functions are as follows:

Exit the edit function,

modify media bandwidths,

modify traffic type global arrival rates,
modify traffic type length,

modify traffic type acknowledgement length,
modify traffic type/medium type error rates,
modify traffic type station arrival rates,
modify traffic type medium multiplex vector,
modify traffic type station connectivity.

.e

eoNOOMBON=O

When the user invokes any of these choices except "0", the program prompts for
information relating to the specific data type to be modified. Some of these
choices, on the assumption that the user will wish to modify a multiplicity of them
at one time, result in a menu of their own, which allows sequential modification of
the data type in question, or a "Q(uit” option to returmn to the "MAIN/EdivEdit”
menu.

A final point concerning editing is that the user does not in fact edit the original
data file during the actual edit session. Instead, a temporary file of the same root
name, but with extension ".tmp” is created, and all editing changes are made to
that file. When the user invokes the “MAIN/EdiVEdit/0®™ command to exit an
editing session , the program provides the option of storing the edited data under
the original file name, under a new file rame, or abandoning the changes with no
permanent file being created. If a new file name is chosen, it does not automati-
cally become the active network of the program. It will be necessary for the user
to use the "MAIN/New” command to select the new file for analysis.

Invoking the "MAIN/Edit/Verity command provides the user with the
opportunity to check the current network data file (i.e., the one displayed by the
program in the Navigation/Status wwndow) for consistency. The verify command
provides specific outputs to screen and printer, if requested, indicating the nature
and locations of the inconsistenxes found. Data which contains inconsistencies
will not provide reliable network performance metrics, and in fact may cause
system crashes when computation based on it is attempted. The user must edit
inconsistent data, and reverify it 10 inaure that the results of analytical endeavors
with MMDESIGN are meaningtul

4.2.2.4 The "H(ardcopy”™ Command
The “"H(ardcopy™ command on the MAIN menu enabies the user to get

hardcopy output of the network defintion data, Invoking the “"H(ardcopy”
command presents the user with another menu,

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
31

MULTIMEDIA NETWORK DESIGN STUDY — FIRST YEAR FINAL REPORT

"Display G(lobal data, T(raffic type data, A(ll data, Q(uit: “.

The user can print out only that network data which is global (data items a. - d. in
Section 4.1), only data that is specific to one traffic type (items e. - g. in Section
4.1), or the entire contents of the active network definition file. The printout is
formatted so that the various data types contained in the file are easily
distinguishable. If no data file is currently active, the program will prompt for one.

4.2.2.5 The "R(ecall” Command

The "R(ecall” command permits the user to bring into computer memory the
global data from a network definition file, and the traffic type data in that file
associated with one specific traffic type index. (Because the product-form
analysis of even modest-sized networks requires a substantial body of data, the
data for only one traffic type at a time is ever in memory. All analysis needed for
that traffic type can be done from that data.) Invoking the "R(ecall” command
establishes the recalled network and tratfic type as the currently active data set in
the program. The "R(ecall” command simultaneously brings any throughput data
already computed for the traffic type into memocry, (see 4.2.2.6 and Equation 2 -
3), so that the user may pursue the analysis of the traffic type.

4226 The "T(hruput™ Command

The "T(hruput” command (mispelled to save space in the menu line), is used
to compute the relative throughputs for the network and traffic type currently
active in the program. The relative throughputs for any traffic type are computed
from Equation 2 - 3, and, once obtained, are the basis for all performance metrics
available for analysis. Invoking the “T(hruputs®™ command begets the user another
menu,

“"C{ompute, D(isplay, P(rint, Q(uit:"

These menu entries permit the obvious actions to be performed, where the
"P(rint” command may be used to print throughputs for one, or all, traffic types.

Since the throughput computation is the most intensive computation required
for open network analysis, the resuilts of a successful throughput computation are
automatically stored to a file the name of which has the currently active network
name as root, and the extension “.thp®. Thus if a user wishes to terminate an
analysis session, t0o be resumed at a later time, it will not be necessary to
recompute these quantities, which computation may prove to be time-consuming
for large networks.

4.2.2.7 The "P(aths” Command

The paths selected for analysis in the network can be chosen independently of
the original network creation, editing, and throughput calculation processes. In
the normal order of events, the analyst would define a network via the creation
process, edit it if necessary to delete inconsistencies, and then compute the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
32

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

throughputs associated with that network definition for the traffic types of interest.
After those activities had been completed, the analyst could directly examine the
metrics associated with the individual nodes of the network (see Section 4.2.2.8
below for a description of the available metrics). However, in order to understand
the effect of the network structure on the end-to-end delay of traffic, the analyst
must examine the delay times of multiple-node paths. If a particular end-to-
end scenario of interest involves only one path, then the end-to-end delay is
simply the sum of the nodal response time (i.e., queueing plus service delay) for
the path.

However, if the end-to-end scenario involves an origin and destination
connected by multiple paths, then the analyst might desire the mean delay for ali
traffic of a given type between the origin and destination, traveling by whatever
path is available. This was discussed in detail in Section 3.5, where it was shown
that the computation of expected delay requires in such case a weighted sum of
path delays, for all paths regarded as routes between the origin and destination.
The "P(aths” command permits the analyst to define sets of paths from a specific
origin to a specific destination, such that any such set of paths will be taken as a
collection over which expected end-to-end delay is to be computed. These sets
can be created, edited, and verified using the "P(aths” command.

When the analyst invokes the "P(aths™ command,the menu line
“"C(reate, A(dd, D(elete, V(erity, H(ardcopy Q(uit: "

appears. The explanation of these options will be taken up in their order of
appearance.

First, the "MAIN/Paths/C(reate command permits the analyst to establish a
new seot of paths between any origin and destination node, and to list the traffic
types of interest for that set of paths. The user is informed (based on how many
path sets have already been defined) of what integer index will be associated with
this path set, and then is prompted for the number of paths to be included in the
sot. Following that, the user enters the individual paths, each as a sequence of
nodes separated by spaces, all nodes of a given path being entered sequentially
from origin to destination, separated by spaces, and terminated with the "ENTER"
key.

The user is then prompted for the traffic types of interest relative to this path
{(i.e., the traffic types for which the expected aggregate end-to-end traffic delay is
to be computed), which are to be entered separated by spaces, and terminated
with the "ENTER"™ key. At the end of the path creation process, the program
automatically chacks that the paths do indeed exist (i.e., all links of each path
have an associated nonzero routing transition probability), and informs the analyst
of any inconsistencies discovered.

The "MAIN/Paths/A(dd” and "MAIN/Paths/Delete” commands constitute the
editing process for the library of stored path sets. The "A(dd” command allows
the analyst to insert additional paths in existing path sets. The program prompts
for the path set to which a new path is t0 be added, and, following the response,
the analyst emers a path description in the same format as was described for the
path set creation process. The additional path is automatically verified as valid

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
33

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

(in the same manner as for path creation), and the user is warned of
inconsistency.

For the delete command, the analyst is prompted for a path set from which to
delete a path, and then is shown a screen listing of the paths in the set. The user
enters a path index for the path, as adduced from the screen listing of the paths.

Note that the path sets defined for a network are stored in a separate file, the
root name of which is the network name, and the extension for which is ".pth". All
creation and modiffication activities involving the path sets automatically update
this file without user intervention.

The "MAIN/Paths/Verify " command can be called at any time by the analyst,
and will either verify a specific path set as containing consistent paths, or will
verify all existing path sets.

The "MAIN/Paths/Hardcopy”™ command permits the user to obtain a printer
output of the contents of either a specific path set, or all path sets.

The "MAIN/Paths/Quit™ command returmns the user to the MAIN menu line.

4.2.2.8 The "M(etrics” Command

The “M(etrics”™ command sllows the analyst to examine the various network
peformance metrics which can be computed for the network. All of these metrics
require first that the relative throughputs associated with Equation 2 - 3 and
saction 4.4.2.6 have been computed. All metrics related only to nodal
performance can then be obtained directly: those relating to mean delay tor
traffic traveling along paths, or collections of paths, cannot be computed until the
desired sets of paths have been defined via the "P(aths” command discussed in
Section 4.4.2.7.

Invoking the "M(etrics™ command presents the menu
“"N(odes, P(aths, Q(ueue Length Density, H(ardcopy, Q(uit: ".

The “H(ardcopy™ option does not prompt the user, but simply turns the printer on
so that a hardcopy record of all metrice requested is provided. This hardcopy
option remains activated until the “MAIN/Metrics/Quit™ command is invoked.
Hardcopy requested is formatted so that it is clear from the printout exactly what
performance metrics have been supplied.

The "N(odes” command presents the user with a menu line
“S(ingle Node, A(ll nodes, Q(uit: ~.

The user can exercise the “S(ingle Node" option to request the available
pertormance metrics for a specific node, and may request the "A(ll Nodes”
option to get a listing of the nodal pertormance metrics for all nodes. The screen
listing of metrice scrolls, as does all ordinary screen output, so it is advisable to
have invoked the "MAIN/Metrics/Hardcopy™ option prior to invoking the "All Nodes”

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
34

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

option. In either the “All Nodes™ or "Single Node” case, the metrics supplied for
each node are

1. the throughput of the node for each traffic type,

2. the total throughput of the node for all tratfic types combined,
3. the utilization of each composite channel at the node,

4. the \utilization ot the individual media at the node,

5. the nodal response time for each traffic type at the node.

These measures will be given more precise mathematical definitions in Appendix
B. Taken together, \ney provide a good diagnostic tool by which the analyst can
examine bDottlenecks in the network, and determine their causes.

invoking the "MAIN/Metrics/Paths™ command presents the user with another
menu,

"S(ingle Path Set, A(ll Path Sets, Q(uit: ~

The “S(ingle Path Set” option prompts the user to enter the identity of a single
path set (path sets are discussed in connection with Section 4.2.2.7), and then
the overall expected path delay for the aggregate of all paths in the set is
computed and output to the screen and/or printer.

The "A(ll Path Sets™ option outputs the same metrics as the "S(ingle Path
Set” option, but does so for every path set which is in the paths file for the
network. The delays are provided for each traftic type which was associated with
the path set ot interest at the time the path set was defined.

The numbers supplied in this case are just the mean delay time for transit of
the traffic type(s) from the origin 1o the destination node. In a later version of the
program, the computation of variance tor that delay will also be supplied.

The "Q(ueue Length Density” command provides a more resolved look at the
potential queueing bottilenecks in the system. When this command is invoked,
the analyst is prompted for a node number and tratfic type, and the program then
computes and outputs the probabriinty density of the queue length for that traffic
type at that node. In theory, thue deneny has infinitely many non-zero terms, but
in practice, the terms are truncated when the queue length probabilities become

less than 10 -6

invoking the "MAIN/MetricarQuet® ocommand retums the analyst to the MAIN
program menu.

4.2.2.9 The "Quit~ Command

invoking the "Q(uit” command at the MAIN menu level exits the main program.
Since all creation and editing processee in MMDESIGN are stored to files as they
occur, the user may exit the program wthoutl firet being concemed about data
changes which may have been macde agunng the program.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
as

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

4.3 Summary and Further Directions

This completes the discussion of the program menus, and should provide the
analyst with enough background to successfully exploit the power of MMDESIGN
to examine the overall traffic flow in a network, and to seek better allocation of
assots. The MMDESIGN prograrm must be developed and used in prototype
fashion over some range of test cases in order to fully understand its potential as
an adjunct to network design by simulation. The second year of this study will be
focused on studying such test cases with MMDESIGN, and, using the insight thus
gained, creating automated capabilities within MMDESIGN to seek allocation of

assets 80 as to achieve optimum traffic timeliness within the bandwidth constraints
ot the system.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
36

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

5.0 REFERENCES

[1). Aigner, Martin, Combinatorial Search, John Wiley & Scns,
New York, NY, 1988

[2]. Nemhauser, George L., and Wolsey, Laurence A., Integer and
Combinatorial Optimization, John Wiley & Sons, New York, NY, 1988

[3]. Jackson, R. R. P., "Queueing Systems with Phase Type Service™, J. R.
Statistical Society, B18, 129-132

[4]. Baskett, F., Chandy, K., Muntz, R., Palacios, F., "Open, Closed, and Mixed
Networks of Queues with Different Classes of Customers™, J. ACM, Vol. 22,
No. 2, Apr '75, pPp. 248 - 260

[5]. Lemoine, A. J., "Networks of Queues, a Survey of Equilibrium Analysis™,
Management Science, Vol. 24, No. 4, Dec. '77, pp. 464 - 481

[+]
(6]. Lavenberg, S.S. (Editor), Computer Performance Modeling
Handbook, Academic Press, San Diego, CA, 1983

[7]. Akyildiz, |. F., "Exact Product-Form Solution for Queueing Networks with
Blocking~™, IEEE Trans. on Computers, Vol. C-36, No. 1, Jan ‘87,
pp 122-125

[8]. Conway, E. A., Georganas, N. D., "RECAL - A New, Efficient Algorithm for
the Exact Analysis of Multiple Closed-Chain Queueing Networks™, J. ACM,
Vol. 33, No. 4, Oct. ‘86, pp. 768 - 791

[9]). DeSilva, E. D., Lavenberg, S. S., "Calculating Joint Queue
-Length Distributions in Product-Form Queueing Networks™,
J. ACM, Vol. 36, No. 1, Jan '89, pp. 194 - 207

AIRMICS/HARRIS COMTRACT DAKF11-88-C-0052
37

2500-0-88-1 1 IMVQ SIHHVH/SOINHIV VSN

MO ‘SIS Yred MY 198 Yred d3un)g J)0) ‘S9PON Y ‘apoN d[dur)s un)d ‘eieq M)y ‘eieq adA 1 ougen)), ‘eieq [eqopo Aeidsiq

_
_
_
0

.
.
[}
.
.
.
.
.
| I

|
W) *Kdoopre) *Apsuaq] yduag anan)) ‘sy)d ‘sPON

Knanoauuo)) uonerg adA |, oues [AJyipop '8
10139/ xo[dg[njy wmipajy oA [, duesf Aipop 'L
Sajey [eALLY uonelg adA [duges |, AJIpOp ‘9
sajey sowg adA | wnipapy/adA 1 duges L, YOl
(p8ua] juawadpajmownioy adk [augei] Ajtpop b
8ua] oA g, duggea, Aypop '€

sajey [eAy [eqolD) adA J, ouges 1, AJIpop
SyIpimpueg BIPIJ AJIpOjN °|

uonouny 11pg A g 0

Injo ‘u)d ‘Aedsq ‘eindwo)y

!
!
!
!
!
.

mn)) ‘Adoopre)yf ‘Ajud)A ‘aRR)Q ‘PR ‘Ael))

e

o ame e w

w0 "GIA 1D 9

L Ll

o e e oo e e o o e e e e
- e e

| | |
njy ‘Souislyy ‘suie)d ‘sindruyy ‘feaslyy ‘Adoopie)y ‘up)3 ‘areas)) ‘el

(INTN NIVIN NOISTANIN
TANLONALS NNTN NOISFAWIN TYIIHOYVYHIH HL 40 MAIA

- . - . — . . — . ———— —-—- — — — —y

V XIONdddV

1HOd 34 TVNI4 HVY3JA LSHI4 - AQNLS NDIS3A XHOML3N VIAIWILINW

E

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

APPENDIX B

THEORETICAL DESCRIPTION OF CLOSED-FORM MODELING FOR OPEN
NETWORKS OF QUEUES

The general description of the context and limitations of closed-form network-
of-queues models were discussed in Section 2. The techniques by which such
modeling can be fruitfully applied to the design of muitimedia communications
networks were discussed in Section 3. in that section, an open network model
was adopted for the study of the multimedia traffic type issues of communications.
it is fortunate that the open network model is the germane model in this case,
since the computational difficulties associated with that model are less severe
than for closed networks. (Recall that an open network allows arrivals to and
departures from the system, while a closed network does not: thus the customer
count for a closed network does not change.)

This appendix will provide careful mathematical development of the essential
expressions for the primary performance measures of open network models. The
development presented in this appendix is the essential underlying mathematics -
on which the MMDESIGN program is based.

To begin this exposition, recall that the assumption underlying the success of
the closed-form technique is that the network have a product-form. This
assumption actually means that

1. the state of each node is expressible solely in terms of its current customer
population, i.e., in terms of the numbers of customers of each type
currently in queue and in service,

2. the state of the entire network is expressible exactly in terms of the
individual states »f the nodes.

The latter assumption is expressible in terms of a product of independent
probabilities,

Pr{(S1, S2, ..., SN)} = Pr{S1}Pr{S2}...Pr{Sn}

where
S; is a vector representing the customer population at node i,

Pr{(S1, S2, ..., SN)} is the probability of the network having the aggregate
state represented by the state vectors of the nodes, and

Pr{S;} is the probability that node i has the state represented by S;.

These assumptions hold true provided that the routing in the network is
probabilistic rather than deterministic, i.e., that each customer leaving a node has
a probability of thereafter going to any other connected node. The routing

probabilities are grouped in a routing transition probability matrix. which may take

the form

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
39

|

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

Pl(i,s), (j.t)] = probability of a customer of class s at node i transits to a
customer of class t at node j .

However, the pairwise notation used above is inconvenient, so we opt instead to
use a notation where each (node, customer class) pair takes on a single index
notation, which we will call the customer typa. In effect, each customer class has
now been subdivided into many customer types. (There are then many more
customer types than classes, but the matrix dimensions remain the same.)

Given this change of notation, the matric expression for routing transition
probabilities becomes

Plc. d] « probability that a type c customer transits to a type d customer.

This matrix would be a square matrix, with dimension equal to the total number of
customer types determined in this way. However, for open networks, we include
the possibility that a message leaving processing at a node may be absorbed at
that node. This effectively adds a “zero-th" customer type, which is included as a
zero-th column of the matrix, P[c,0].

Together with this matrix, the arrival rates at the nodes determine the
essential loading of the network, and from this, all measures of performance are
derived. For reasons of mathematical convenience, the arrival process is
expressed in terms of a global arrival rate per customer class, which is the tota!
arrival rate for all customers of that class to all nodes, and a probability
distribution which subdivides that arrival rate between all relevant nodes. The
global arrival rate is taken to be Poisson (i.e., exponentially distributed
interarrival times). Each customer class global arrival rate can in fact be
dependent on the number of customers of that class already in the system: thus
the arrival rate for customer class i could be expressed as a discrete function

Aj0), Ai(1), Ai(2),
In the application of this theory to multimedia communications, there has been no
need to consider variable arrival rates, so we will denote the arrival rate for

customer class | simply by Aj.

Now the global arrivals into customer class i are panitioned by a discrete
probability density, say pj = (pjy. Pi2. ..., PiN). Wwhere

Pij = the probability that an arrived class i customaer arrives at node j .
The actual consequences of this two-step description of arrival is actually

equivalent to postulating Poisson arrivals tor each customer class at each node,
where the overall arrival rate for customer class i at node | becomes

Ajj = PijAi. (Equation B - 1)

Converting over to customer types, where d is a customer type which is of
customer class i, we will use the notation

P[0, d]} = probability that a customer class globa! arrival of class i
goes to customer type d.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
40

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

in this notation, we are prepared to state what is the fundamental relationship
from which all of the remaining performance measures filow, namely,

yd = P[0.d] + 2 ycPlc.d] (Equation B - 2),
ceC

which expresses the relationship of the relative throughputs for the network. In
this equation,

¥Yd = the relative throughput of customer type d, and
C = the set of all customer types (including the "0" type).

The equations represented by Equation B - 2 are a set of linear equations which,
for open networks (i.e., at least one P[0, d] not equal to 0), are uniquely solvable
for the quantities yg, d € C. In many instances, the equations in fact decompose
into disjoint subsets of equations, because the potential classes and nodes that
some subsets of customers might visit are restricted by routing limitations to less
than the full sets of nodes and classes. Such subsets are called glosed routing
chains.

The quantities yg are called throughputs because Equations B - 2 are
effectively flow equations, and the yq correspond to the total traffic intensity
entering a node from all other sources. These throughputs are called "relative”
because the equations do not involve in any way the global arrival rates to the
system: however, the only effect of the global arrival rates is to scale the absolute
tratfic throughput values to some factor times the relative throughputs. There
may be several of these customer “type" throughputs associated with a node, of
course.

Once Equations B - 2 have been solved for the Yd. several derived
performance measures for the nodes are available, as described below. For
node j and customer type c, let

Cj = the set of all customer types passing through node j, and

E[Sc] = the expected service demand of a customer of type c.

Then

Y@ = 2 Yc (Equation B - 3),
ce C’
represents the total relative throughput of node j.

E[SjH)] = [Z vc E[S¢)]/yu) (Equation B - 4),
cc C‘
represents the expected service demand per customer on node j independent of
customer type.
be = yc E(Sc] (Equation B - 5),

represents the total customer type ¢ service demand on node j.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
41

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

b() = 2 be (Equation B - 6),

CECj

represents the total expected service demand for node j.

Again, all of these numbers are relative quantities: they provide comparisons
between nodes, but until they are muitiplied by the absolute arrival rates, they do
not provide absolute values for the indicated quantities. If A; represents the
absolute arrival rate for type c customers (which are of class i), then we can
express absolute arrival rate for type ¢ customers as

Ac= Aiyc (Equation B - 7),
and we can express the type ¢ absolute service demand as
Pec = Ajbg, (Equation B - 8)

and the absolute service demand on node j is

P'(j) = 4jb(j) (Equation B - 9).

The above expressions do not reflect the fact that the service rates at the
nodaes can also be taken to be dependent on the number of customers already in
queue at those nodes. However, we have no need of queue-dependent service
rates in the MMDESIGN program, so we shall not consider the extra mathematics
associated with that case.

We are now in a position to express the probability density for the queue

length at a node. If u; is the service rate at node j, and nj is the number of
customers currently at node j, then

Prob{nj=aq} = [p'() s Kj]9.Prob{n; = 0} (Equation B - 10).

For the FIFO queue, which is the only queue of interest in the MMDESIGN
program, the latter factor is given by

Prob{nj = 0} = 1 - (Aibg) 7/ 1) (Equation B - 11).

The latter term in the last equation is usually called the tratfic intensity at a node,
and we will denote it as

Pj = Ajbg) 7 Kj (Equation B - 12).

From the above results for FIFO queues, it is possible to express the expected
queue length in closed form, i.e.,

Elnjl = pj/(1 - pj) (Equation B - 13).

The above results essentially provide the mathematical elements underlying the
derivation of performance metrics for the MMDESIGN program.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
42

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

APPENDIX C
MMDESIGN SOURCE CODE

The MMDesign source code is written in Borland's Turbo Pascal. The source code consists of a main
program and two supporting units, as follows.

MMDesign.PAS -- the source code for the main program,
Data_lIO.PAS -- the source code which supplies all the file handling and data manipulation
activities
tor the main program
NetComp.PAS -- the source code which supplies the computational fucntions needed by the
main program.

Note that MMDesign is an evolving program, and thus the source code supplied in this appendix will
undoubtably be considerably expanded and attered following publication of this document.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
4

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST "R FINAL REPORT

PROGRAM MMDesign; (*John R. Doner 8 August 1989°)

(*This program is the main implementation of the networks of queues theory
as applied to the Multimedia Network Design Study. Note that this code
is in an evolutionary state, and as such includes partially implemented
and unimplemented features.*)

USES Data_lO, NetComp, CRT;
(.'t'Q'."'."'."Q'.Q.Q".QQ."."Q"'."'....."".'t'.'..""'...."'..".

DICTIONARY OF SIGNIFICANT PROGRAM VARIABLES

BadFile - controls exit from a procedure if data file not available
command -- user input to any menu prompt

10Window - denotes the main window on the screen for user input/output
message -- used to pass string to CenterText procedure

NetDefined -- specifies whether a network is cumrently in memory
NetworkName -- name of currently active network

NoGo -- general purpose flag, used variously in program

Print - controls hardcopy output from the Data_lO.Verify procedure
quit -- controls exit from the main menu program loop

Trafficindex -- denotes traffic type currently of interest

VAR NetworkName, message : STRING;
Trafficindex, i : INTEGER;
quit, BadFile, Print, NoGo, NetDefined : BOOLEAN;
command : CHAR;
IOWindow : TEXT;

(*The foliowing procedure provides the top-of-screen display on the screen,
indicating the current status of the program.*)

PROCEDURE NewScreen(titie: STRING);

VAR spaces: INTEGER;
Xtop, YTop, XBottom, YBottom, BackColor, ForeColor, StatusColor. BYTE;
Stat: TEXT;

BEGIN
(*Open the status window and write display 1o & °)

XTop = BYTE(1);

YTop = BYTE(1);

XBottom = BYTE(80);

YBottom = BYTE(?7);

BackColor := BYTE(13);

ForeColor := BYTE(14);

StatusColor = BYTE(15);
TextBackground(BackColor);
TextColor(ForeColor);

Window(Xtop, YTop, XBottom, YBottom);
AssignCRT(Stat);

REWRITE(Stat);

CirScr;

Write(Stat,’A ++++++++++++4+++ AIRMICS MULTIMEDIA NETWORK DESIGN PROGRAM),
WriteLn(Stat, + ++++++++++++4++ A’);

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
44

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

WriteLn(Stat, 1", 77, 1');
spaces := (40 - Length(NetworkName)) DIV 2;
Write(Stat, 'R’,’ ":spaces, ‘Current Data File: °);
TextColor(StatusColor);
Wirite(Stat, NetworkName);
TextColor(ForeColor);
Wirite(Stat, © Traffic type:’);
TextColor(StatusColor);
Write(Stat, Trafficindex:3);
TextColor(ForeColor);
IF (2*spaces + 39 + Length(NetworkName)) < 79 THEN spaces := spaces + 1;
WiriteLn(Stat, ' ":spaces, 'R’);
WriteLn(Stat, ‘M', ' .77, 'M’);
spaces = (63 - Length(titie)) DIV 2;
Write(Stat, ‘I',’ ":spaces,”** Menu: °);
TextColor{StatusColor);
Wirite{Stat, title);
TextColor(ForeColor);
IF (2'spaces + 16 + Length(title)) < 79 THEN spaces = spaces + 1;
WriteLn(Stat,” ***, ’ ":spaces, 'I');
WriteLn(Stat, °'C’, * *:77, 'C");
Write(Stat, ‘S +4+++ttttttttttttttttttt b bbb bbbt b b e)
Write(Stat, "++++++tt+tt+++++ S);
CLOSE(Stat);
END(*"NewScreen*);

(*The following procedure opens the main I/O window for data entry.”)

PROCEDURE MainWindow;
VA?; XTop, YTop, XBottom, YBottom, BackColor, ForeColor: BYTE;
BEGIN
XTop = BYTE(1);
YTop = BYTE(8);
XBottom := BYTE(80);
YBottom = BYTE(25);
BackColor .« BYTE(7);
ForeColor := BYTE(1);
TextBackGround(BackColor);
TextColor(ForeColor);
Window(XTop,YTop, XBottom, YBottom);
AssignCRT(IOWindow);
REWRITE(IOWindow);
CirScr;
WriteLn(IOWindow)
END(*MainWindow");

BEGIN("MAIN PROGRAM®)
(*Initialization of program status parameters’)

NetworkName := ‘Undefined’;
Trafficindex = O;
NetDefined := FALSE;

quit .= FALSE;

REPEAT
NewScreen('MAIN');
MainWindow;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
45

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

Wirite(IOWindow, ' N(ew, C(reate, E(dit, H(ardcopy, R(ecall, T(hruputs,’);
Write(IOWindow,” P(aths, M(etrics, Q(uit: ');
RESET(IOWindow);
ReadLn{iOWindow, command);
CASE command OF
'N'.'n'":
BEGIN
NewScreen('MAIN/New');
MainWindow;
Write(' Enter new network name: °);
ReadLn(NetworkName);
NetDefined := TRUE
END("CASE 'N™);
'C','c":
BEGIN
NoGo = FALSE;
NewScreen('MAIN/Create Network’);
MainWindow;
Write(' Enter the filename in which network data is to be stored: °);
ReadLn(NetworkName);
NewScreen('MAIN/Create Network');
MainWindow;
NetDefined := TRUE;
CreateNetwork(NetworkName);
Trafficindex = NumberTrafficTypes
END(*CASE Create*);
'E')e":
BEGIN
REPEAT
NewScreen{'MAIN/Edit’);
MainWindow;
IF NOT NetDefined THEN
BEGIN
Write(" Enter name of file containing network data: ’);
ReadLn(NetworkName);
NetDefined := TRUE;
NewScreen('MAIN/Edit’);
MainWindow
END;
Write(' E(dit, V(erify, Q{uit: *);
ReadLn{command);
CASE command OF
'E'e":
BEGIN
NewScreen{'MAIN/Edit Network Data’);
MainWindow;
EditNetwork(NetworkName);
END(*CASE 'E™);
V',V
BEGIN
NewScreen('MAIN/Edit/Verify Network Data’);
MainWindow;
WriteLn;
WriteLn(' **** Network Data Verification ****');
WriteLn;
Write(' Is hardcopy output desired? (y/n):).
ReadLn(command);
WriteLn;
IF command = 'y’ THEN Print .= TRUE ELSE Print .= FALSE;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
46

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

IF NOT Verity(NetworkName, Print) THEN
BEGIN
WiritelLn;
BEEP;
TextAtir .= BlinkOn OR TextAttr;
WriteLn(’ *+« WARNING: data must be edited before use. ****’);
TextAttr = BlinkOff AND TextAttr;
WiriteLn
END
ELSE Write(" Network data passes all consistency tests.’);
Write(' Press any key to continue.’);
ReadLn
END(*CASE 'V™);
‘Q’, 'q': command = q'
END(*"MAIN/Edit CASES®)
UNTIL command = 'q’
END("CASE Edit*);
'H 'h:
BEGIN
NewScreen('MAIN/Hardcopy');
MainWindow;
IF NOT NetDefined THEN
BEGIN
Write(' Enter name of network data file: ');
ReadlLn{NetworkName);
NetDefined = TRUE
END;
WHILE command <> 'q' DO
BEGIN
NewScreen('MAIN/Hardcopy');
MainWindow;
BadFile .= FALSE;
WriteLn;
Write(" Display G(lobal data, T(raffic type data, A(ll data, Q{uit: °);
ReadLn(command);
CASE command OF
'G''g":
BEGIN
IF NOT DisplayNetwork(0, NetworkName) THEN BadFile := TRUE
END("CASE 'g™);
T,1:
BEGIN
WriteLn;
Write(" Enter traffic type for which hardcopy is desired: °);
ReadLn(j);
IF NOT DisplayNetWork(i, NetworkName) THEN BadFile := TRUE
END(*CASE '1™);
‘A’Va’:
BEGIN
IF NOT DisplayNetwork(0, NetworkName) THEN BadFile := TRUE;
FOR i := 1 TO NumberTrafficTypes DO
IF NOT DisplayNetwork(i,NetworkName) THEN BadFile = TRUE
END(*CASE 'a™);
‘q,Q"
BEGIN

(*“Make sure that original data is back in memory®)
IF Tratficindex <> 0 THEN

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
47

MULTIMEDIA NETWORK DESIGN STUDY - FiRST YEAR FINAL REPORT

IF RetrieveNetwork(Trafficindex, NetworkName) THEN ;
command = 'q’
END(*CASE 'q™)
END(*CASE command/Display menu®);
IF BadFile THEN
BEGIN

BEEP;

TextAttr .= TextAttr OR BlinkOn;

WriteLn;

Write(' The specified data file cannot be opened:’);

Write(' press any key to continue.’);

ReadLn;

TextAttr .= TextAttr AND BlinkOff;

CirScr

END(*IF BadFile®)
END(*"WHILE command ...*)
END(*CASE Display*);
R.'r:
BEGIN
NewScreen('MAIN/Retrieve’);
MainWindow;
WiriteLn;
Write(" Enter disk file name for network: °);
ReadLn(NetworkName);
Write(' Enter traffic type of interest: °);
ReadLn(Trafficindex);
WritelLn;
IF NOT RetrieveNetwork(Trafficindex, NetworkName) THEN
Write(" Retrieval from disk failed: °)
ELSE
BEGIN
Write(' Network data loaded to memory: °);
NetDefined :=TRUE
END(*IF NOT RetrieveNetwork... ELSE...");
Write('press any key to exit to MAIN Menu.’);
ReadlLn
END(*CASE Retrieve®’);
i
BEGIN
REPEAT
NewScreen('MAIN/Thruputs’);
MainWindow;
Write(' C(ompute, D(isplay, P(rint, Q{uit:);
ReadLn(command);
CASE command OF

'C’,'e:

BEGIN
NewScreen('MAIN/Thruputs/Compute");
MainWindow;

Write('Compute A{li or a S{pecific throughput? °);
ReadLn(command);
CASE command OF
‘AlVa’;
BEGIN
FOR i := 1 TO NumberStations DO
IF NOT SolveThruputs(i, NetworkName) THEN
BEGIN
BEEP;
STR(i:3,message);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
48

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

message = Thruput computation failed for traffic type’
+ message;
CenterText(message)
END
ELSE Write(Thruput computed for traffic type ',i:3);
Write(': press any key’)
END(*CASE 'A™);
'S'’s"
BEGIN
Write('Enter traffic type for which to compute throughputs: °);
ReadLn(i);
IF NOT SolveThruputs(i, NetworkName) THEN
BEGIN
BEEP;
\éV':itDe('Solution for throughputs failed:’)
ELSE Wirite(Throughputs computed:’);
Write(' press any key to continue. °);
ReadlLn
END(*CASE 'S™)
END(*CASE command...*)
END(*CASE 'C™);
'D'd"
BEGIN
WriteLn(' Function not impiemented: press any key to continue.’);
ReadLn
END;
Pp':
BEGIN
WriteLn(' Function not implemented: press any key to continue.’);
ReadLn
END;
'Q','q": command = 'q’;
END("MAIN/Thruput CASES*);
UNTIL command = 'q’;
END(*"CASE T);
‘P
BEGIN
REPEAT
NewScreen('MAIN/Paths’);
MainWindow;
Write(' C(reate, A(dd, D(elete, V(erty, H(ardcopy, Q(uit: *);
ReadlLn(command);
CASE command OF
'C''c":
BEGIN
WriteLn{" Function not impiemented: press any key to continue.’);
ReadlLn
END;
‘Aa’
BEGIN
WriteLn(' Function not implemented: press any key to continue.’);
ReadlLn
END;
'Dd"
BEGIN
WriteLn(' Function not implemented: press any key {o continue.’);
ReadLn
END;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
49

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

Vv
BEGIN
WriteL.n{' Function not implemented: press any key to continue.’),
ReadiLn
END;
H''h'":
BEGIN
WriteLn{" Function not implemented: press any key to continue.’);
ReadlLn
END;
'Q,'q": command = 'q’
END(*CASE command...*)
UNTIL command = 'q’
END(*CASE Paths*);
‘™M, ‘m';
BEGIN
REPEAT
NewScreen('MAIN/Metrics’);
MainWindow;
Write(' N(odes, P(aths, Q{ueue length density, H{ardcopy, E(nd: *);
ReadlLn{command);
CASE command OF
‘N','n":
BEGIN
WriteLn(' Function not implemented: press any key to continue.’);
ReadLn
END;
Pp":
BEGIN
WriteLn{’ Function not implemented: press any key 10 continue.’);
ReadLn
END;
'Q'q"
BEGIN
WriteLn(' Function not implemented: press any key to continue.’);
ReadLn
END;
'H,'h:
BEGIN
WriteLn(" Function not implemented: press any key to continue.’);
ReadLn
END;
'E','e’: command = ‘e’
END(*CASE command...*)
UNTIL command = ‘e’
END(*CASE Metrics®);
‘Q,'q: quit .= TRUE
END(*MAIN Menu CASES"®)
UNTIL quit
END(*Main Program®).

AIRMICSMHARRIS CONTRACT DAKF11-88-C-0052
50

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

UNIT Data_lO; (*John R. Doner 20 July 1989°)

(. cesecsesvecasecenane e . vaoe

This unit supplies all of the procedures, data types and variables
needed 1o manage the input data associated with a full network
description as required by the AIRMICS MultiMedia Network Design
Closed-Form Queueing Model.

cosstecsterresnesssesenanene ve)

INTERFACE
USES DOS, CRT;

CONST AnyFile = $3F; (*Used by DOS FindFirst() procedure.*)
BlinkOn = BYTE(132); (*Used to blink warning messages")
BlinkOff = BYTE(123); (*Tum off blinking*)
MaxNodes = 30; (*Maximum number of nodes: memory limited.*)
MaxMediumTypes = 3; (*Maximum number of media types.”)
MaxTrafficTypes = 3; (*Maximum number of traffic types.®)
FormFeed = CHR(12); (*Formfeed control code for printer.®)

DICTIONARY OF SIGNIFICANT PROGRAM VARIABLES AND TYPES

AckLength -- length of the acknowledgement for current traffic

ErrorRates]i] -- missed message rates (MMR) of current traffic type
relative to each medium

GlobalArrivalRate - network-wide arrival rate of current traffic type

MediumBandWidth[i] -- bandwidths (bits/second) of the available media

NumberMediumTypes -- total number of media available in the network

NumberStations -- total number communications nodes in network

NumberTrafficTypes -- total number of traffic types in system

StationMultiplex[i.j] — vectors used to media multiplex traffic at stations

StationSourceRate[i] -- relative traffic origination rate for station i

StationThruPutsfi,jj - the relative station throughputs for each traffic
type (calculated from input data)

StoredData — a type used by the Fetch() procedure to determine
which type of data is to be copied to the current
data input process from previously stored data

Topology(i.jl - traffic routing transition probability matrix

TratficLength - length of the traffic type currently being considered

o A\l)
TYPE StoredData = (errors, arrivals, multiplex, connectivity);

VAR NumberStations,

NumberMediumTypes,

NumberTrafficTypes . INTEGER;

Topology : ARRAY[1..MaxNodes, 0..MaxNodes] OF REAL;
StationMuttiplex : ARRAY[1..MaxNodes, 1..MaxMediumTypes] OF REAL;
GlobalAmivaiRate,

TrafficLength,

AckLength : REAL;

StationS~urceRate : ARRAY[1..MaxNodes] OF REAL;

Station’ hruputs : ARRAY]1..MaxTratficTypes, 1..MaxNodes] OF REAL;
MediumBandWidth : ARRAY[1..MaxMediumTypes] OF REAL;
EmrorRates : ARRAY]1..MaxMediumTypes] OF REAL;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
51

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

(
The following procedure formats and centers the string variable passed to it
and writes it to the screen.

o o)

PROCEDURE CenterText{message: STRING);

{
The following procedure emits a short tone from the speaker to alert
the user to warning messages on the screen.

"..'.".'."'....'..."Q.'..".'..".'Q'.'....'Q...'.'Q"....'."Q""..")

PROCEDURE BEEP;

(seeeee . cseece

The following function adds “.top” to the input filename, and then
retrieves the data from the so-named disk file containing a network
description. "Trafficindex™ designates for which traffic type the data is
to be retrieved. The input file should be closed when this procedure is
entered, and will be closed at procedure exit. TRUE is returned only if
the retrieve operation is successful.

* '0"0.."'.."')

FUNCTION RetrieveNetwork(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;

The following function stores the computed relative throughput data to

the file named by the input FileName, after adding the extension ".thp”

to the filename. TRUE is returned only it the store operation was

successful. NOTE: the throughputs should be stored under the same filename
as is the network data. The two files will have the same base name, but
extensions ".top" for the network data and “.thp° for the throughput data.

The output file should be closed when the procedure is called, and will be
closed at procedure exit.

o0 seee m'oooﬁnl'ccan)

(Q."."'.C""""'.".....'

FUNCTION StoreThruPuts(FileName: STRING) BOOLEAN;

------- *ee® *e *0e *ee ecees

The following function retrieves throughput aata rom a disk file,

after adding the extension ".thp" to the input hiename. TRUE is returned
only if the operation is successtul. The fue should be closed upon

entry to the procedure, and will be closed & procedure exit.

vos sesese)

FUNCTION RetrieveThruPuts(FileName STRING) BOOLEAN;

(oo . v
The following procedure locates specific data fweias within the “DataFile”
file and retrieves them, writing them into the analogous program vanables
representing the data type retrieved. Any previous value of that data type
extant in memory is overwritten. The data retneved & of the type
requested by the input "DataType”, and the specsdc mstantiation retrieved
is that associated with the traffic type denoted by “Traficindex" or

AIRMICSMHARRIS CONTRACT DAKF11-88-C-0052
52

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

“Trafficindex” and “station". For fetches of all data types except station
multiplex data, the data returned is that associated with a previously
defined traffic type: "station” is ignored during such a request. For
station multiplex data, the data type retumed is for the current traffic
type and a previous station. TRUE is returned only if the data retrieval
was successful. Fetch neither opens nor closes the data file, and leaves
the file pointer at its original position upon exit.

o o))

PROCEDURE FetchData(Trafficindex, station: INTEGER; DataType: StoredData;
VAR DataFile: FILE);

(sevecasnnteren ve servens .

The following function checks for three required types of consistency

in the current data. First, it checks that the rows of the Topology matrix

for the curmrent traffic type sum to one. Then it checks to see that the

sum of the StationSourceRates is one, and finally it checks to see that

no medium at any station is required to carry more than 100% of its bandwidth
in traffic as a result of the media multiplexing scheme. Due to the
inexactness of digital computation, the first two checks actually only

require that the sums be within 1% of 1.0. When that is the case, the
summed values are normalized to obtain the maximum precision available
within the limits of the type REAL floating point number format. FALSE is
returned if any constraint is not met, and an internal message is written

to the screen indicating the nature of the inconsistency. The data file
should be closed upon procedure entry, and will be closed at procedure exit.
The input variable "HardCopy", when true cause printout of the verify data
to the printer.

T)
FUNCTION Verity(FileName: STRING; HardCopy: BOOLEAN): BOOLEAN;

('0'.""."...'.."".""."'Q' *ee®

The following procedure prompts the user for all input data required for
the definition of a communications network. A disk file is used for output
of the data. The file, #f already in existence, should be closed before
procedure entry, and will be closed at procedure exit.

)
PROCEDURE CreateNetwork(FileName: STRING);

— . .

The following procedure prompts the user for desired changes to the net-
work. Use of this procedure is predicated on the existence of an already
defined network in the current directory, under the input name “FileName”.
The EditNetwork procedure makes a copy of that network file on disk, and
makes all alterations to the copy. At the end of the edit session, the

user may choose whether the copy is to replace the original, or is to be
stored under a separate name. The original file to be edited should be
closed at procedure entry, and will be closed at procedure exit.

R)

PROCEDURE EditNetwork(FileName: STRING);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
3

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

The following procedure provides a hardcopy output of all the input data
required to define a network and a single traffic type. Entry of a 0" as
the traffic index results in display of the network wide variables. For

all entrys of legitimate values of "Trafficindex”, the information specific
to that traffic type will be printed. The file to be used should be closed
upon procedure entry, and will be closed at procedure exit. TRUE is
returned only if the file can be opened.

o)
FUNCTION DisplayNetwork(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;

The following procedure displays the absolute messsage throughputs of the
nodes for traffic type designated by "Trafficindex™. The filename should

be the same as that under which the network topology data was stored.
The file should be closed upon procedure entry, and will be closed at
procedure exit. TRUE is returned only if the file is found and successfully
opened.

) e)
FUNCTION Display Thruputs(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;

RGN RODRSC RN SRS RORIORNNRERS - LA LAl A)

IMPLEMENTATION

PROCEDURE CenterText(message: STRING);
VAR spaces: INTEGER,;

BEGIN
spaces = (69 - Length(message)) DIV 2;
message = "°** ' + message + ' ****;
WriteLn(' ":spaces, message)
END(*CenterText");

("The following procedure gets the global data needed to size the file. This
procedure is not available to calling programs.*)

PROCEDURE GetGiobai(VAR DataFile: FILE);
VAR i: INTEGER,;
BEGIN
SEEK(DataFile, 0);
Blockread(DataFile, Numberstations, SIZEOF(NumberStations));
BlockRead(DataFile, NumberMediumTypes, SIZEOF(NumberMediumTypes));
FOR i := 1 TO NumberMediumTypes DO
BlockRead(DataFile, MediumBandWidth[i], SIZEOF(MediumBandWidth(i]});
BlockRead(DataFile, NumberTrafticTypes, SIZEOF(NumberTrafficTypes))
END(*GetGiobal*);

PROCEDURE BEEP;

BEGIN
SOUND(1000);
DELAY(200);
NOSOUND

END;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
54

—T

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

FUNCTION RetrieveNetwork(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;
VAR i, j: INTEGER;

StantPoint, PreLoop, LoopSize: LONGINT;

DataFile: FILE;

Fileinfo: SearchRec;

BEGIN
FileName := FileName + '.top’;
FindFirst(FileName, AnyFile, Fileinfo);
IF DOSError <> 0 THEN
BEGIN
RetrieveNetwork = FALSE;
EXIT
END
ELSE
BEGIN
ASSIGN(DataFile, FileName);
RESET(DataFile, 1);
BlockRead(DataFile, NumberStations, SIZEOF(NumberStations));
BlockRead(DataFile, NumberMediumTypes, SIZEOF(NumberMediumTypes));
FOR i := 1 TO NumberMediumTypes DO
BlockRead(DataFile, MediumBandWidth(i], SIZEOF(MediumBandWidth(i]));
BlockRead(DataFile, NumberTrafficTypes, SIZEOF(NumberTratficTypes));
IF Trafficindex > NumberTrafficTypes THEN
BEGIN
Write(This traffic type does not exist in ', FileName,”: °);
Write('press any key to continue.’);
ReadLn;
CLOSE(DataFile);
RetrieveNetwork = FALSE;
EXIT
END("IF Trafficindex > ...*);
PrelLoop = 3"SIZEOF(INTEGER) + NumberMediumTypes*SIZEOF(REAL);
LoopSize = (3 + NumberStations + (NumberStations + 1)*"NumberMediumTypes
+ SQR(NumberStations))*SIZEOF(REAL);
StartPoint = PrelLoop + (Trafficindex - 1)*LoopSize;
SEEK(DataFile, StartPoint);
BlockRead(DataFile, GlobalArrivalRate, SIZEOF(GlobalArrivalRate));
BlockRead(DataFile, TrafficLength, SIZEOF(TrafticLength));
BlockRead(DataFile, TrafficLength, SIZEOF(TrafficLength));
BlockRead(DataFile, AckLength, SIZEOF(AckLength));
FOR i := 1 TO NumberMediumTypes DO
BlockRead(DataFile, EmmorRates{i], SIZEOF(EmorRatesi])).
FOR i := 1 TO NumberStations DO
BlockRead(DataFile, StationSourceRate[i], SIZEOF(StationSourceRate[i]));
FOR i = 1 TO NumberStations DO
FOR j := 1 TO NumberMediumTypes DO
BlockRead(DataFile, StationMultiplex]i,j], SIZEOF(StationMultiplex{i.i}});
FOR i := 1 TO NumberStations DO
FOR j ;= 0 TO NumberStations DO
BlockRead(DataFile, Topologyli.j. SIZEOF(Topologyli.jl)):
RetrieveNetwork = TRUE;
CLOSE(DataFile)
END(*IF DOSEnmor...ELSE...*)
END("RetrieveNetwork®);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
55

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

FUNCTION StoreThruputs(FileName: STRING): BOOLEAN;
VAR i, j: INTEGER;

ThruputFile: FILE;

BEGIN
FileName = FileName + ".thp’;
s ASSIGN(ThruputFile, FileName);
{$)
REWRITE(ThruputFile, 1);
{$i+}
IF 10Result < 0 THEN
BEGIN
Write("Throughput storage file could not be opened: press any key to’);
WriteLn(’ continue.’);
ReadLn;
StoreThruputs = FALSE;
EXIT
END
ELSE
BEGIN

(*Insert the following data to make the file self-contained.”)

BlockWrite(ThruputFile, NumberStations, SIZEOF(NumberStations));
BlockWrite(ThruputFile, NumberTrafficTypes, SIZEOF(NumberTrafficTypes)).

FOR i :== 1 TO NumberTrafficTypes DO
FOR j := 1 TO NumberStations DO
BlockWrite(ThruputFile, StationThruputsfi, {],
SIZEOF(StationThruputs]i,il));

StoreThruPuts = TRUE;

CLOSE(ThruputFile)

END(*IF IOResult... ELSE...")
END(*StoreThruputs®);

FUNCTION RetrieveThruputs(FileName: STRING): BOOLEAN;
VAR i, j: INTEGER;

ThruputFile: FILE;

Filelnfo: SearchRec;

BEGIN
FileName := FileName + ‘.thp’;
FindFirst(FileName, AnyFile, Fileinfo);
IF DOSError <> 0 THEN
BEGIN
Wirite(Throughput file ', Filename,’ not found: press any key to);
WiriteLn('continue.’);
ReadLn;
RetrieveThruputs = FALSE;
EXIT
END
ELSE
BEGIN
ASSIGN(ThruputFile, FileName);

REWRITE(ThruputFile, 1);
{$1+)

iF IOResult < 0 THEN

BEGIN

{$1-}

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
56

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

Write("Throughput storage file could not be opened: press any key to’);
WriteLn(' continue.’);
ReadLn;
RetrieveThruputs = FALSE;
EXIT
END
ELSE
BEGIN
BlockRead(ThruputFile, NumberStations, SIZEOF(NumberStations));
BlockRead(ThruputFile, NumberTrafficTypes, SIZEOF(NumberTrafficTypes));
FOR i ;= 1 TO NumberTrafficTypes DO
FOR j := 1 TO NumberStations DO
BlockWrite(ThruputFile, StationThruputsi, j],
SIZEOF(StationThruputs]i,i}));
RetrieveThruputs = TRUE;
CLOSE(ThruputFile)
END(*IF IOResult...ELSE...")
END(*IF DOSError ... ELSE...*)
END("RetrieveThruputs®);

PROCEDURE FetchData(Trafficindex, station: INTEGER; DataType:
StoredData; VAR DataFile: FILE);

VAR i, j: INTEGER;
FileStart, PreLoop, LoopSize, InLoop, StartPoint: LONGINT;

BEGIN
FileStart := FilePos(DataFile);
PreLoop := 3"SIZEOF(INTEGER) + NumberMediumTypes*SIZEOF(REAL);
LoopSize = (3 + NumberMediumTypes + 2°NumberStations + SQR(NumberStations) +
NumberStations*NumberMediumTypes)*SIZEOF(REAL);
StartPoint := PreLoop + (Trafficindex - 1)*LoopSize;
CASE DataType OF
errors:
BEGIN
InLoop := StartPoint + 3*SIZEOF(REAL);
Seek(DataFile, InLoop);
FOR i := 1 TO NumberMediumTypes DO
BlockRead(DataFile, ErrorRatesli], SIZEOF(ErmorRates|i}))
END(*errors®);
arrivals:
BEGIN
inLoop := StartPoint + (3 + NumberMediumTypes)*SIZEOF(REAL);
Seek(DataFile, InLoop);
FOR i := 1 TO NumberStations DO
BlockRead(DataFile, StationSourceRateli], SIZEOF(StationSourceRateli]))
END("arrivals®);
multiplex:
BEGIN
InLoop := StartPoint + (3 + NumberMediumTypes + NumberStations +
(station - 1)°NumberMediumTypes)*SIZEOF(REAL);
SEEK(DataFile, InLoop);
FOR j := 1 TO NumberMediumTypes DO
BlockRead(DataFile, StationMultiplex[station,,
SIZEOF (StationMultiplex|station,j]))
END(*multiplex*);
connectivity:
BEGIN
inLoop = StartPoint + (3 + NumberMediumTypes

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
57

o

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

+ NumberStations*(NumberMediumTypes + 1))*SIZEOF(REAL);
SEEK(DataFile, InLoop);
FOR i := 1 TO NumberStations DO
FOR j := 0 TO NumberStations DO
BlockRead(DataFile, Topologyfi.j], SIZEOF(REAL));
END("connectivity®)
END(*CASES");
Seek(DataFile, FileStart)
END{*FetchData");

FUNCTION Verity(FileName: STRING; HardCopy: BOOLEAN): BOOLEAN;
VAR i, j, k, m: INTEGER;

sum: REAL;

message, message2: STRING;

Transitions, Capacity, SourceRates: BOOLEAN;

DataFile: FILE;

Filelnfo: SearchRec;

MultiplexSums: ARRAY[1..MaxNodes,1..MaxMediumTypes] OF REAL;

Ist: TEXT;

BEGIN
(*Open file.")

FileName := FileName + ".top’;
FindFirst(FileName, AnyFile, Fileinfo);
IF DOSError <> 0 THEN

BEGIN

(*Can't open, so make a graceful exit.")

Write('File *, FileName, * not found: press any key 1o continue.’);
ReadlLn;
EXIT
END
ELSE
BEGIN
IF HardCopy THEN
BEGIN
ASSIGN(Ist, ‘pm’);
REWRITE(Ist)
END;

(*Open file, and get the essential parameten & the top of file.*)

ASSIGN(DataFile, FileName);
RESET(DataFile, 1);
BlockRead(DataFile, NumberStations STt Of (NumberSiations));
BlockRead(DataFile, NumberMedumYypes S ZE OF (NumberMediumTypes));
FOR i := 1 TO NumberMediumTypes DO

BlockRead(DataFile, MediumBandwaar(.] SEOF (MediumBandWidth(i))).
BiockRead(DataFile, NumberTratic Types $ € OF (NumberTrathicTypes));

IF HardCopy THEN

BEGIN
WiriteLn(lst, 'Verification of routing transton probabilities:’);
WriteLn(lst)

END;

Transitions .« TRUE;

FOR i ;= 1 TO NumberTratficTypes DO

AIRMICSMHARRIS CONTRACT DAKF11-88-C-0052
58

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT
BEGIN
(*First check for consistency of topology information.*)

FetchData(i, 0, connectivity, DataFile);
FOR j := 1 TO NumberStations DO
BEGIN
sum = 0.0;
FOR k = 0 TO NumberStations DO sum := sum + Topoiogyli, k]:
IF ABS(sum - 1.0) <= 0.01 THEN
Fé)ER m = 0 TO NumberStations DO Topology[i,m] := Topology[i,m}/sum
EL
BEGIN
Transitions := FALSE;
Str(i:3, message);
message = 'WARNING: routing probability data, traffic type *
+ message + ' is inconsistent.’;
CenterText(message);
iIF HardCopy THEN
BEGIN
Write(ist, © Routing probability data for traffic type °,i.3);
WriteLn(ist, *, station ",j:3, ' sums to ‘, sum:5:3)
END
END;
END(*FOR j ...%)
END(*FOR i...*);
WritelLn;
IF (HardCopy AND Transitions) THEN
WriteLn(Ist, "No inconsistencies were found.’);

(*Next, check for consistency of source rate data.®)

IF HardCopy THEN
BEGIN
WiriteLn(ist);
WriteLn(Ist);
WriteLn(ist, 'Verification of station arrival rate data:’);
WriteLn(lst)
END;
SourceRates = TRUE;
FOR i := 1 TO NumberTrafticTypes DO
BEGIN
sum = 0.0;
FetchData(i, 0, arrivals, DataFile);
FOR j = 1 TO NumberStations DO sum = sum + StationSourceRate[j];
IF ABS(sum - 1.0) <= 0.01 THEN
FOR j := 1 TO NumberStations DO
StationSourceRate[j] .= StationSourceRate{j)sum
ELSE
BEGIN
SourceRates := FALSE;
Str(i:3, message);
message = ‘'WARNING: station armval rates for traffic type’
+ Mmessage + ' are inconsistent °;
CenterText(message);
IF HardCopy THEN
BEGIN
Write(lst, © Station amival rates for trattc type ', i.3);
WwriteLn(ist, ' sum to ‘,sum:5:2)

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
59

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

END .
END(*FOR j ...")
END{*FOR i...*);
Writeln;
IF (HardCopy AND SourceRates) THEN
WiriteLn(lst, 'No inconsistencies were found.’);

(*Finally, sum up the traffic type demands on the available channels.*)

IF HardCopy THEN
BEGIN
WriteLn(lst);
WriteLn(Ist);
WriteLn(ist, ‘Verification of channel capacity constraints: °);
WriteLn(ist)
END;
Capacity := TRUE;
FOR i := 1 TO NumberStations DO
FOR j := 1 TO NumberMediumTypes DO MultiPlexSumsi,j} := 0.0;
FOR i := 1 TO NumberTrafficTypes DO
FOR j := 1 TO NumberStations DO
BEGIN
FetchData(i, j, multiplex, DataFile);
FOR k := 1 TO NumberMediumTypes DO
MuttiplexSums(j k] := MultiplexSums]j.k] + StationMultiplex]j, k]
END(*FOR i, j, k...");
FOR j := 1 TO NumberStations DO
FOR k := 1 TO NumberMediumTypes DO
IF MultiplexSums]j, k] > 1.0 THEN
BEGIN
STR(k:3, message);
STR(j:3, message2);
message = 'WARNING: channel capacity for medium ’ + message +
', station ' + message2 + ' exceeded.’;
CenterText(message);
IF HardCopy THEN
BEGIN
Wirite(ist, © Muttiplexed channel capacity for medium " k:3};
WriteLn(lst," at station ",j:3, * sums to *,MultiplexSums]j,k]:5:3)
END;
Capacity := FALSE
END(*FOR i, j, IF...*);
IF (HardCopy AND Capacity) THEN
WriteLn(ist, ‘No inconsistencies were found.”);
IF HardCopy THEN CLOSE(ist);
Verify = Transitions AND Capacity AND SourceRates
END(*iF DOSError...ELSE...")
END(*Verify*);

PROCEDURE CreateNetwork;
VAR i, j, k, index: INTEGER,;
sum: REAL;

FuliName, message: STRING;
command: CHAR;

DataFile: FILE;

Filelnfo: SearchRec;

BEGIN

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
60

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

(*File name entry®)
REPEAT
CenterText(NETWORK CREATION’);
command = 'y’;
WritelLn;
WiriteLn('Data will be stored to disk as it is entered.’);
WiriteLn;
FuliName := FileName + ".top’;
FindFirst(FuliName, AnyFile, Fileinfo);
IF DOSErmor = 0 THEN
BEGIN
Writeln;
BEEP;
TextAttr := TextAttr OR BlinkOn;
CenterText(WARNING: Like-named file already on disk will be destroyed.’);
TextAftr ;= TextAttr AND BlinkOff;
WriteLn;
Write(Proceed anyway? (y/n): *);
ReadLn(command);
CirScr
END
ELSE
command = 'y';
UNTIL command = 'y’;
ASSIGN(DataFile, FullName);
REWRITE(DataFile, 1);

(*“NumberStations®)

REPEAT
Write('Enter number of communications stations (not exceeding ');
Write(MaxNodes:3,"): ;
ReadLn(NumberStations)

UNTIL NumberStations <= MaxNodes ;

BilockWrite(DataFile, NumberStations, SIZEOF(INTEGER));

WriteLn;

(*"NumberMediaTypes®)
REPEAT
Write('Enter number of media types (not exceeding ');
Write(MaxMediumTypes:3,’): °);
ReadLn{NumberMediumTypes)
UNTIL NumberMediumTypes <= MaxMediumTypes;
BlockWrite(DataFile, NumberMediumTypes, SIZEOF(INTEGER));
WiriteLn;

(*MediumBandWidth[.]*)

FOR i := 1 TO NumberMediumTypes DO

BEGIN
Write(" Enter bandwidth of medium type ', i:3, ' (Kbits/second):);
ReadLn{MediumBandWidth[i});
BlockWrite(DataFile, MediumBandWidth[i), SIZEOF(MediumBandWidth{i}));

END;

WiriteLn;

(*“NumberTrafficTypes®)
REPEAT
Write('Enter number of traffic types (not exceeding °):
Write(MaxTrafficTypes:3, °):);
ReadLn(NumberTrafficTypes)

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
61

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

UNTIL NumberTrafficTypes <= MaxTrafficTypes;
BlockWrite(DataFile, NumberTrafficTypes, SIZEOF(NumberTrafficTypes));
WriteLn;

(*All remaining data is traffic type dependent, and so will be entered
for each traffic type.®)

FOR i := 1 TO NumberTratficTypes DO
BEGIN
CirScr;
WriteLn;
BEEP;
TextAttr .= TextAttr OR BlinkOn;
Str(i:3, message);
message = 'Data input for traffic type ' + message;
CenterText(message);
TextAttr = TextAttr AND BlinkOff;

(*GlobalArrivalRate*)
WriteLn;
Write('Enter the network-wide traffic type arrival rate (messages/sec.): °);
ReadLn(GlobalAmivalRate);

BlockWrite(DataFile, GlobalArrivalRate, SIZEOF(GlobalArrivalRate));
WriteLn;

(*TrafficLength®)
Write('Enter mean message length (in bits) for traffic type: °);
ReadlLn(TrafficLength);
‘BNlockWrite(DataFile, TrafficLength, SIZEOF(TrafticLength));
riteLn;

(*AckLength®)
Write('Enter mean iength (bits) for acknowledgement message (0 if none sent): ');
ReadLn(AckLength);
evlockl\-Nnrite(DataFile, AckLength, SIZEOF(AckLength));
riteLn;

(*ErrorRates®)
CirScr;
CenterText('Entry of traffic type MMR for each medium type’);
WriteLn;
Wirite('Copy previous missed message rates? {nty): °);
ReadLn{command);
IF command = 'y’ THEN
BEGIN
REPEAT
Write('Enter previously defined traffic type from which to copy: °);
ReadLn(index)
UNTIL index < i;
FetchData(index, 0, errors, DataFile)
END
ELSE
FOR j := 1 TO NumberMediumTypes DO
BEGIN
Write('Enter missed message rate for medium °j2." °);
ReadLn(EmorRatesj})
END;
FOR j := 1 TO NumberMediumTypes DO
BlockWrite(DataFile, ErrorRates(j], SIZEOF(EmorRates(j])).

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
62

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT
WriteLn;

(“StationSourceRate")
CirScr;
CenterText('Station relative arrival rates for tratfic type’);
WriteLn;
Write('Copy previous arrival rates? (rvy): °);
ReadlLn(command);
IF command = 'y’ THEN
BEGIN
REPEAT
Write('Enter previously defined traffic type from which to copy: °);
ReadLn(index)
UNTIL index < i;
FetchData(index, 0, arrivals, DataFile);
END
ELSE
FOR j := 1 TO NumberStations DO
BEGIN
Wirite('Enter station arrival rate for station °,j:2,": ');
ReadLn(StationSourceRate][j])
END;
FOR j := 1 TO NumberStations DO
BlockWrite(DataFile, StationSourceRatelj], SIZEOF (StationSourceRate([j]));
WriteLn;

(*StationMultiplex®)

ClrScr,

CenterText('Entry of traffic type/media type multiplex data’);

WriteLn;

FOR j := 1 TO NumberStations DO

BEGIN
WriteLn{'Entry of media multiplex vector for station ',j:3,".");
Write{'Copy previous multiplex vector? (ym): ;

ReadLn{command);
IF command = 'y’ THEN
BEGIN
REPEAT
Wirite('Enter previously defined station from which to copy: °);
ReadLn(index)
UNTIL index < §;
FetchData(i, indr ¢, multiplex, DataFue)
END
ELSE
FOR k = 1 TO NumberMediumTypes DO
BEGIN

Write('Enter fraction of medium ° &k 2 cetcated to this traffic: °);
ReadLn(StationMultiplex(j, k})

END;

FOR k = 1 TO NumberMediumTypes DO

BlockWrite(DataFile, StationMultpies; &} SIZEOF(StationMultiplexj.k]));
WiritelLn
END(*FOR j...*);

(*Topology®)
CirScr;
CenterText('Entry of topology matnx for thus traftic type’);

WriteLn;
WriteLn('Note: station "0 is the sink for al messages, so enter the ’);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
63

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

WriteLn(' proportion of traffic terminating at node i for the °);
WriteLn(’ (i, 0] entry of the topology matrix.’);
WriteLn;
Write('Copy previous topology matrix? (y/n): °);
ReadLn(command);
IF command = "y’ THEN
BEGIN
REPEAT
Write('Enter previously defined traffic type from which to copy: ');
ReadLn(index)
UNTIL index < i;
FetchData(index, 0, connectivity, DataFile)
END
ELSE
BEGIN

(*Initialize all transition probabilities to zero.*)

FOR j := 1 TO NumberStations DO
FOR k = 0 TO NumberStations DO Topologyl[j, k] := 0.0;
WiriteLn('Enter (origin, destination, probability), with data entries’);
WriteLn(' separated by spaces, followed by a <ENTER>. To terminate °);
WriteLn('the process, enter a probability of zero with any node pair.’);
WriteLn;
REPEAT
Wirite("Origin node, Destination Node, Probability -->);
ReadLn(j, k, sum);
iF sum <> 0 THEN Topologyfj, k] ;= sum
UNTIL sum = 0.0
END(*IF command...ELSE...*);
FOR j := 1 TO NumberStations DO
FOR k = 0 TO NumberStations DO
BlockWrite(DataFile, Topologylj.k], SIZEOF(Topologylj.k}));
WriteLn
END(*FOR i ...*);
CLOSE(DataFile);

(*Data verification®)

CirScr;
WritelLn;
CenterText('DATA VERIFICATION);
WriteLn;
IF NOT Verify(FileName, FALSE) THEN
BEGIN
BEEP;
TextAttr .= TextAttr OR BlinkOn;
CenterText('WARNING: this data must be edited before use.’);
TextAttr =« TextAtir + BlinkOff
ENd
ELSE
WriteLn({'Data entered does not violate any consistency rule.’);
Write(': press any key to continue.’);
Readln
END(*CreateNetwork*);

PROCEDURE EditNetwork(FileName: STRING);
VAR i, j, EditChoice, index: INTEGER,;
command. CHAR;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
64

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

quit: BOOLEAN;

value, sum: REAL;

DataFile, TempFile: FILE;

Filelnfo: SearchRec;

TempFileName, NewName: STRING;

data: BYTE;

PreLoop, LoopSize, InLoop, StartPoint: LONGINT;

BEGIN
quit := FALSE;

(*Create a copy of the input data file on which to make editing changes.®)

TempFileName = FileName + "tmp’;
FileName := FileName + ".top’;
FindFirst(FileName, AnyFile, Fileinfo);
IF DOSErmor <> 0 THEN
BEGIN
Write('Cannot find the file to be edited: press any key 1o continue.’);
ReadlLn;
EXIT
END;
ASSIGN(DataFile, FileName);
RESET(DataFile, 1);
ASSIGN(TempFile, TempFileName);
REWRITE(TempFile, 1);
WHILE NOT EOF(DataFile) DO
BEGIN
BlockRead(DataFile, data, 1);
BlockWrite(TempFile, data, 1)
END(*WHILE NOT...");
GetGlobal(DataFile); (*Get the required global parameters from the file.*)
CLOSE(DataFile);

(*Obtain essential "sizing” parameters for getting around in the file.*)

PreLoop := 3*SIZEOF(INTEGER) + NumberMediumTypes"SIZEOF(REAL);

LoopSize = (3 + NumberMediumTypes + 2'NumberStations + SQR(NumberStations) +
NumberStations . 'umberMediumTypes)*SIZEOF(REAL);

(*Main edit menu follows.")

WiritelLn;

REPEAT
WriteLn({' Edit functions are as follows:');

WriteLn(" 0. exit the edit function,’);
writeLn(' 1. modify media bandwidths,’);
WriteLn(' 2. modify traffic type global amrival rates,’).
WriteLn(" 3. modify traffic type traffic length,”);
WriteLn(' 4. modity traffic type acknowledgement length,’);
WriteLn{" 5. modify traffic type/medium type error rates’);
WriteLn(" 6. modify traffic type station arrival rates.’);
WriteLn(" 7. modity traffic type medium mutltiplex vector,’);
WriteLn(" 8. modily traffic type station conneclivity,’);
WiritelLn;
Write(' Enter integer corresponding to choice: °);
ReadLn(EditChoice);
CASE EditChoice OF

0: (*Exit procedure and saving edited file to disk.”)

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
65

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

BEGIN

quit := TRUE;

CLOSE(TempFile);

WriteLn;

Write(' Save as O(riginal, as N(ew, or E(xit without saving?: °);

ReadlLn({command);

CASE command OF

'0,'0":
BEGIN
ERASE(DataFile);
RENAME(TempFile, FileName)
END("CASE '0™);
n',’N".
BEGIN
REPEAT
Write(' Enter filename under which to store edited data: ');
ReadlLn{NewName);
NewName = NewName + ".top’;
FindFirst(NewName, AnyFile, Fileinto);
IF DOSError = 0 THEN
BEGIN
WritelLn;
BEEP;
TextAttr = TextAtir OR BlinkOn;
CenterText('WARNING: File of that name already exists.’);
TextAttr .= TextAttr AND BlinkOff;
WriteLn;
Write(' Press any key to continue.’);
ReadlLn(command)
END
ELSE
BEGIN
RENAME(TempFile, NewName);
WriteLn(' File ', NewName, 'stored to disk.’);
END
UNTIL DOSError <> 0
END;
‘e','E': ERASE(TempFile)

END(*CASE command...")

END(*CASE 0°);
1: (*Modify media bandwidths®)
BEGIN
REPEAT
WriteLn;
Write(" Modify which medium bandwidth?: °);
ReadlLn(index)

UNTIL index <= NumberMediumTypes;

StantPoint .~ 2°SIZEOF(INTEGER)

+ (index - 1)"SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempfFile, value, SIZEOF(vale)).
WriteLn(' Existing value is ', value:8:2);
Write(" Modify to what value?: °);
ReadLn(value);

SEE /T ~mpFile, StantPoint);

Bl .e(TempFile, value, SIZEOF(value))
END(*CASE 1°);
2: (*Modify traffic type global arnval rate®)
BEGIN

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
66

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

REPEAT
Writeln;
Write(" Modify which traffic type global arrival rate?: °);
ReadLn(index)
UNTIL index <= NumberTrafficTypes,
StartPoint := PreLoop + (index - 1)*LoopSize;
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value, SIZEOF(value));
WriteLn(' Existing value is ', value:8:2);
Write(' Modify to what vaiue?: °);
ReadLn(value);
SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 2*);
3: (*"Modify traffic type traffic length®)
BEGIN
REPEAT
WritelLn;
Write(" Modify which traffic type traffic length?: °);
ReadLn(index)
UNTIL index <= NumberTrafficTypes;
StartPoint := PreLoop + (index - 1)*LoopSize + SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value, SIZEOF(value));
WriteLn(' Existing value is °, value:8:2);
Write(" Modify 1o what value?: °);
ReadLn(value);
SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 3');
4 (*Modify traffic type acknowledgement length*)
BEGIN
REPEAT
WriteLn;
Write(" Modify which tratfic type acknowledgement length?: °);
ReadbLn(index)
UNTIL index <= NumberTrafficTypes;
StantPoint := PreLoop + (index - 1)*LoopSize + 2°'SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value, SIZEOF(value));
WriteLn(' Existing value is ', value:8:2);
Write(' Modify to what value?: °);
ReadLn(value);
SEEK(TempfFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 4°%);
5: (*Modify traffic type/medium type eror rates®)
BEGIN
REPEAT
WriteLn;
Write(' Modity error rate for which traffi/medium pair?.),
ReadLn(index, i)
UNTIL {(index <= NumberTratiicTypes) AND (i <= NumberMediumTypes));
StartPoint := Prel.oop + (index - 1)*LoopSize +
(2 + i)*SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value, SIZEOF(value));
WriteLn('Existing value is °, value:6:4);
Write('Modify to what value?: °);

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
67

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

ReadLn(value);
SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 5°*);
6: (*Modify station source rates for traffic type®)
BEGIN
REPEAT
WriteLn;
Write(' C(hange station source rate, E(xit (c/e): *);
ReadLn(command);
CASE command OF
‘¢, 'C"
BEGIN
REPEAT
WritelLn;
Write(' Modify source rates for which traffic type/’);
Wirite('station?: °);
ReadbLn(index, i)
UNTIL ((index <= NumberTrafficTypes) AND (i <=NumberStations));
StartPoint := PreLoop + (index - 1)*LoopSize
+ (2 + i + NumberMediumTypes)*SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value SIZEOF(value))
WriteLn(" Existing value is ‘, value:8:2);
Write(' Modify to what value?: Y
ReadLn(value);
SEEK(TempFile, StartPoint);
BlockWrite(TempfFile, value, SIZEOF(value))
END(*CASE ‘c™);
‘e"'E":
END("CASE command...*)
UNTIL command = ‘e’
END('CASE 6');
(*“Modity traffic type medium multiplex vector*)
BEGIN
REPEAT
WriteLn;
Write(" C(hange a multiplex value, or E(xit (c/e): *);
ReadlLn(command);
CASE command OF
'c’, 'C"
BEGIN
REPEAT
Writeln;
Write(" Modify medium multiplex vector for which traffic’);
Wirite(' type/ statiorv medium?: °);
ReadLn(index, i, j)
UNTIL ((index <= NumberTrafficTypes) AND (i <= NumberStations)
AND(j <= NumberMediumTypes));
StartPoint := PreLoop + (index - 1)*LoopSize
+ (3 + NumberMediumTypes + NumberStations
+ (i - 1)*'NumberMediumTypes + j - 1)*SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value, SIZEOF(value));
WriteLn({" Existing value is ', value8:2);
Write(' Modify to what vaiue?:),
Readln{value);
SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
68

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

END(*CASE '¢c™);
‘e’ 'E":
END(*CASE command...")
UNTIL command = ‘e’
END(*"CASE 7°);
8.

BEGIN
REPEAT
WiriteLn;
Wirite(' C(hange a transition probability, or E(xit (c/e): °);
ReadlLn(command);
CASE command OF
'c’, 'C"
BEGIN
REPEAT
WriteLn;
Write('Modify topology for which traffic type/ origin’);
Wirite('/destination stations?: °);
ReadLn{index)
UNTIL ((index <= NumberTrafficTypes) AND (i <= NumberStations)
AND (j <= NumberStations));
StartPoint := PrelLoop + (index - 1)*LoopSize
+ (3 + NumberMediumTypes + NumberStations*(NumberMediumTypes + 1)
+(i - 1)*"NumberStations + j)* SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value, SIZEOF(value));
WriteLn(® Existing value is ', value:8:2);
Write(' Modity to what value?: °);
ReadLn(value);
SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE '¢c™);
‘e’ 'E":
END(*"CASE command...”)
UNTIL command = ‘e’
END(*CASE 8°)
END(*CASES")
UNTIL quit
END(*EditNetwork*);

FUNCTION DisplayNetwork(Trafficindex: INTEGER. FieName: STRING):BOOLEAN;
VAR i, j: INTEGER;

PreLoop, LoopSize, StartPoint. LONGINT.

DataFile: FILE;

Filelnfo: SearchRec;

Ist: TEXT;

BEGIN
FileName = FileName + ".top’;
FindFirst(FileName, AnyFile, Fileinfo).
IF DOSEror <> 0 THEN
BEGIN
DisplayNetwork = FALSE;
EXIT
END
ELSE
BEGIN

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
69

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

ASSIGN(DataFile, FileName);
RESET(DataFile, 1);
ASSIGN(ist, ‘pm’);
REWRITE(lst);

IF Trafticlndex = 0 THEN
BEGIN

(*print out the global information.*)

GetGlobal(DataFile);
WriteLn(ist, 'GLOBAL DATA FOR NETWORK DEFINITION IN *, FileName);
WriteLn(lst);
WriteLn(Ist, 'Number of network nodes = ‘', NumberStations:3);
WriteLn(ist, "Number of medium types = ‘', NumberMediumTypes:3);
WriteLn(Ist, 'Number of traffic types = *, NumberTrafficTypes:3);
WriteLn(lst);
WriteLn(ist, 'Media Bandwidths:');
FOR i := 1 TO NumberMediumTypes DO
BEGIN
Write(lst, 'Bandwidth for medium ’, i:3, *
Er\qN[;neLn(lst MediumBandWidthi): 82 Kan/sec]
WriteLn(ist, FormFeed)
END
ELSE
BEGIN

(*Print out the specific information concerning a given traffic type.*)

GetGlobal(DataFile);

PreLoop = 3'SIZEOF(INTEGER) + NumberMediumTypes*SIZEOF(REAL);

LoopSize := (3 + NumberMediumTypes + 2*NumberStations +
SQR(NumberStations) + NumberStations*NumberMediumTypes)*SIZEOF(REAL);

StartPoint := PreLoop + (Trafficindex - 1)‘LoopSize;

SEEK(DataFile, StartPoint);

(‘global arrival rate, message length, acknowledgement length®)

BlockRead(DataFile, GlobalAmivalRate, SIZEOF(GlobalArrivalRate));
BlockRead(DataFile, TrafficLength, SIZEOF(TrafficLength));
BlockRead(DataFile, AckLength, SIZEOF(AckLength));

Wirite(Ist, INFORMATION FOR TRAFFIC TYPE ', Trafficindex:3);
WriteLn(Ist ,’ IN FILE ’, FileName);

WriteLn(ist);

Write(ist, ‘Traffic type global arrival rate = °);

WriteLn(Ist, GlobalArrivaiRate:9:2, ' messages/sec.’);

Write(lst, Traffic type message length =)

WriteLn(lst, TrafficLength:8:1,’ bits.’);

Write(ist, Traffic type acknowledgement length = *);

WriteLn(ist, AckLength:8:1, * bits.’);

WriteLn(lst);

(*missed message rates for all medium types.*)

FeichData(Trafficindex, 0, errors, DataFile);
WriteLn(lst, Traffic type missed message rates for the medium types:’);
FOR i := 1 TO NumberMediumTypes DO

WriteLn(ist, ‘MMR for medium type °,i:3, ' « ° EmorRates]i]:5:3);
WriteLn(Ist);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
70

e

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

(“source rates for traffic type at each station®)

FetchData(Trafficindex, 0, amivals, DataFile);

WriteLn(lst, 'Arrival rate for this traffic type at each station:’);

FOR i := 1 TO NumberStations DO

BEGIN
Write(lst,'Arrival rate at station ', i:3,' = °);
WriteLn(Ist,StationSourceRate[i]:5:4," messages/sec.’)

END;

Write(Ist, FormFeed);

(*station multiplex vectors®)

FOR j := 1 TO NumberStations DO

FetchData(Trafficindex, j, multiplex, DataFile);
WriteLn(ist, ‘Muttiplex vectors for traffic type °, Trafficindex:3);
WiriteLn(lst);
WriteLn(lst,” *:20,'Medium 1 Medium 2 Medium 3°);
FOR i := 1 TO NumberStations DO
BEGIN

Write(ist,'Station ",i:3, * "9);

FOR j := 1 TO NumberMediumTypes DO

Write(Ist, StationMultiplex{i,j}:5:3, * ":8):
WriteLn(lst)

Write(lst, FormFeed);
(“traffic type topology matrix*)

FetchData(Trafficindex, 0, connectivity, DataFile);
Wirite(Ist, 'Routing transition probabilities for traffic type °);
WriteLn(ist, Trafficindex:3);
WriteLn(lIst, ‘(The "0-th" entry represents traffic absorption at station)’);
WriteLn(Ist);
Write(ist, ' ":5);
FOR i := 0 TO NumberStations DO Write(ist, i:3, ' '-5);
WriteLn(ist);
FOR i := 1 TO NumberStations DO
BEGIN
Write(lst, i2, ' °);
FOR j := 0 TO NumberStations DO Write(Ist, Topologyli,jl:5:3, * '3);
WriteLn({lst)
END(*FOR i...");
Wirite(ist, FormFeed)
END(*IF Trafficindex...ELSE...");
CLOSE(lst);
CLOSE(DataFile);
DisplayNetwork = TRUE
END(*IF DOSError...ELSE...%)
END(*DisplayNetwork®);

FUNCTION DisplayThruputs(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;
VAR i: INTEGER;

ThruputFile: FILE;

StantPoint: LONGINT;

value: REAL;

Filelnfo: SearchRec;

ist: TEXT,;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
7

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

BEGIN
FileName := FileName + '.thp';
FindFirst(FileName, AnyFile, Filelnfo),
IF DOSEror <> 0 THEN
BEGIN
Wwirite('Throughput file *, FileName,’ could not be found:’);
WriteLn('press any key to continue.’);
ReadLn;
DisplayThruputs = FALSE;
EXIT
END
ELSE
BEGIN
ASSIGN(ist, 'pm’);
REWRITE(ist);
WiriteLn(ist, THROUGHPUT DATA FOR TRAFFIC TYPE ', Trafficindex:3);
WriteLn(Ist);
ASSIGN(ThruPutFile, FileName);
RESET(ThruputFile, 1);
BlockRead(ThruputFile, NumberStations, SIZEOF(NumberStations));
StartPoint ;= 2*°SIZEOF(INTEGER)
+ (Trafficindex - 1)*'NumberStations*SIZEOF(REAL);
SEEK(ThruputFile, StartPoint);
FOR i := 1 TO NumberStations DO
BEGIN
BlockRead(ThruputFile, value, SIZEQF(value));
EV‘giteLn(lst. "Station °, i:3, ' throughput = " value:5:3)-
ND;
Write(ist, FormFeed);
CLOSE(ThruputFile);
CLOSE(Ist);
DisplayThruputs = TRUE
END(*IF DOSError...ELSE...*);
END("DisplayThruputs®);

BEGIN
END(*Data_|O").

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
72

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT
UNIT NetComp; (*John R. Doner, 3 September 1989°)
(*This unit contains the necessary computional proccedures to determine the

network relative throughputs, and all derived network performance measures
associated with the AIRMICS Multimedia Network Design Program (NetCalc).*)

INTERFACE
USES DOS, Data_lO;

(eesreeneseesssanianesaaess

The following procedure solves the required linear system of equations to
obtain the network reiative throughputs for a given traffic type. input

to the procedure is the traffic type and the network file name containing
the network data, and the output solution is then placed in the appropriate
row of the StationThruput]] array (see Data_lO unit for definition.).

FALSE is returned only if the equations were found to be non-soivable (i.e.,
singular matrix). The file containing network data shouid be closed at
entry to this procedure, and will be closed at exit. Note that this

function does not store the computed throughputs to disk.

e 1 24 "'..'."'."..I"..‘.'..")

FUNCTION SolveThruputs(Trafficindex: INTEGER; NetworkName: STRING): BOOLEAN;
IMPLEMENTATION

FUNCTION SolveThruputs(Trafficindex: INTEGER; NetworkName: STRING): BOOLEAN;
VAR InvertArray: ARRAY[1..MaxNodes,1..MaxNodes + 1] OF REAL;

TransposeCount, i,j, k: INTEGER;

divisor, multiplier, temp: REAL;

transpose: ARRAY[1..MaxNodes,0..1] OF INTEGER,;

Filelnfo: SearchRec;

DataFile: FILE;

(*"InvertArray[]” holds the enhanced matrix while elementary row operations
are performed. “transpose” holds inforrnation on any row interchanges
required during the upper triangularization process. °)

(*The foliowing function interchanges two rows ol the InvertArray matrix i
that is required to bring a non-zero into a8 ckagonal position. The
function returns FALSE only it there are no non-zero elements below the
diagonal.®)

FUNCTION Interchange(row: INTEGER) BOOLEAN;
VAR i, j, k: INTEGER,
temp : REAL;

BEGIN

j=i+ 1

WHILE ((j < NumberStations + 1) AND (InventArrayij.ij = 0)) DO
j=j+1;

IF j = NumberStations + 1 THEN

BEGIN
interchange = FALSE;
EXIT

END;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
73

]

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

FOR k = i TO NumberStations + 1 DO
BEGIN
temp = InvertAmayfik];
InvertArrayli k] ;= invertArrayjj k];
InvertArraylj.k] = temp
END(*FOR k...*);
TransposeCount = TransposeCount + 1;
transpose[TransposeCount, 0] := i;
transpose[TransposeCount, 1] := j;
Interchange := TRUE
END(*Interchange®);

BEGIN
(“First, open the file and fetch the relaevant data.*)

NetworkName := NetworkName + ".top’;
FindFirst(NetworkName, AnyFile, Fileinfo);
IF DOSError <> 0 THEN
BEGIN
SolveThruputs = FALSE;
EXIT
END
ELSE
BEGIN
ASSIGN(DataFile, NetworkName);
RESET(DataFile, 1);

(*Solution for the thruoughputs is carried out by enhancing the coefficient
matrix with the column of source rates for the nodes, and then transform-
ing the coefficient matrix to upper triangular form. From this form, the
unknowns (thruoughputs), can be iteratively determined from the last to
the first (Biblical method).")

(“First load required data to InvertAmray*)

FetchData(Trafficindex, 0, arrivals, DataFile);
FOR i == 1 TO NumberStations DO

invertArray[i, NumberStations + 1] := StationSourceRatefi];
FetchData(Trafficindex, 0, connectivity, DataFile);
FOR i := 1 TO NumberStations DO

FOR j := 1 TO NumberStations DO

InvertArrayfi,j] := -Topology(i.i;
CLOSE(DataFile)
END("IF DOSError...ELSE...");

FOR i := 1 TO NumberStations DO

InvertArrayli,i] := InvertArrayfi,ij + 1.0;
TransposeCount = 0;
(“Matrix is defined: ready to begin upper triangulation.”)

FOR i := 1 TO NumberStations -1 DO
BEGIN

(*First, check that next diagonal element is non-zero, and perform a
row transposition if necessary.®)

IF InvertArrayli,i] « 0 THEN

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
74

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

IF NOT Interchange(i) THEN
BEGIN
SolveThruputs = FALSE;
EXIT
END(*IF NOT ...%);
divisor := InvertArrayli, i};

(*Normalize i-th row so diagonal element = 1.*)

FOR j := i TO NumberStations DO
invertArray]i,j] := InvertArray(i,j)/divisor;

(*Now do subtraction of multiple of i-th row from each following row
to zero out i-th column below diagonal.*)

FOR j := i + 1 TO NumberStations DO
BEGIN
multiplier := InvertAmaylj,jl;
FOR k = i TO NumberStations + 1 DO
InvertArray]j, k] = InvertArray[j k] - multiplier*InvertArray[i,k];
END(*FOR j...")
END(*FOR i...");

(*"Now solve iteratively backward, from last to first throughput, and
place in StationThruput array.*)

FOR i := NumberStations DOWNTO 1 DO
BEGIN
temp = InvertAmrayli, NumberStations + 1];
FOR j := i + 1 TO NumberStations DO
temp = temp - InvertArrayli,j]* StationThruputs[Trafficindex, j;
StationThruputs[Trafficindex, i} := temp/InvertArray{i,i
END(*FOR i...*);

(*Need to perform interchange, if any, of solutions®)

FOR i := 1 TO TransposeCount DO

BEGIN
j = transposefi,0);
k = transposeji,1];
temp := StationThruputs(Tratficindex, jl;
StationThruputs[Trafficindex, j] := StationThruputs[Trafficindex, k].
StationThruputs[Trafficindex, k] = temp

END(*FOR i...*);

SolveThruputs = TRUE

END(*SolveThruputs®);

END(*NetComp*).

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
75

»
Py

USAISEC

—3 US Army Information Systems Engineering Command
m Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,
COMMUNICATIONS, AND COMPUTER SCIENCES

MULTIMEDIA NETWORK DESIGN

STUDY

(ASQB-GC-88-002)

30 September 1989

AIRMICS

115 O’Keefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800

This document provides a report on the first year of the three-year AIRMICS Multimedia
Network Design Study with the work being done by the Harris Corporation. Its goal was
to create a closed-form analytical queuing model for networks of queues. The Army’s
worldwide communication system has become a conglomeration of many systems such as
DDN, DSN, AUTOVON, and wide or local area networks. The need for an efficient
interconnection of these systems requires that systems be evaluated as a group as opposed
to individual nodes. Therefore this research will provide a formal mathematical model
specifically developed for the analysis of multimedia (e.g. coaxial cable, fiber optics, and
twisted pair) networks. The primary output of the project is a PC/AT hosted program,
MMDESIGN, which implements the formal mathematical model and provides a user
interface for analyzing multi-media networks. The program is designed as an iterative
analysis tool and can be used to derive steady state conditions for a network before
attempting simulation analysis of the network to perform transient analysis. Pascal
source code is provided in the report.

This research was performed under contract number DAK11-88-C-0052 for the Army
Institute for Research in Management Information, Communications, and Computer
Sciences (AIRMICS), the RDTE organization of the U.S. Army Information Systems
Engineering Command (USAISEC). This research ~eport is not to be construed as an
official Army position, unless so designated by other authorized documents. Material
included herein is approved for public release, distribution unlimited. Not protected by
copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

s/ MM s/ é}f%/

John W. Gowens John R. Mitchell
Division Chief Director
CNSD AIRMICS

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0185

Exp. Date: Jun 30, 1986

[1a. REPORT SECURITY CLASSIFICATION 10, RESTRIC TIVE MARKINGS
, FIED NONE e ——
2a. SECURITY CLASSIFICAION AUTHORITY 3. DISTRIBUTION/AVAILIBILTY OF REPORT
‘M
26. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
T g ——
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
CLIN 0001 AA, SUN 0001 AB, CDRL A001/3 ASQB-GC-002
6a. NAME OF PERFORMING ORGANIZATION | 6b. <()’t’=r=|ce”svmaoL 7a. NAME OF MONITORING ORGANIZATION
applicable)
Harris Corporation AIRMICS
6c. ADDRESS (City, State, and Zip Code) 7b. ADDRESS (C'ty, State, and ZiP Code)
Melbourne, FL, 329802 115 O’Keefe Bldg.

e e = Tt T et SR I T ———
f[7b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I applicable)
DAKF11-88-C-0052

‘ AIRMICS ASQB-G !
8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O’Keefe Bldg. PROGRAM PROJECT TASK WORK UNIT

Georgia Institute of Technology ELEMENT NO.| NO. NO. ACCESSION NO.

Atlanta, GA 30332-0800 P612783 DY10 03-02-09 DA 315 378

Georgia Institute of Technology
Atlanta, GA 30332-0800

11.

TITLE (inciude Security Classification)

Multimedia Network Design Study: First Year Final Report

12

PERSONAL AUTHOR(S)
Dr. John R. Doner

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month, Day] 15. PAGE COUNT

Annual FROM OCT 88710 OCT 89 89, SEP, 30 76

16

SUPPLEMENTARY NOTATION

17, COSATI CODES 18. SUBJEGT TERMS (Continue on reverse If necessary and Identify by block number)
FIELD GROUP SUBGROUP

Multimedia, Network, Queing, Modeling

|20 DISTRIBUTIONN/AVAILIBILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
X uncLassIFIED/UNUMITED[] SAME AS RPT. [[] DTIC USERS UNCLASSIFIED

19.

ABSTRACT (Continue on raverse if necessary and identily by biock number)

This document provides a report on the first year of the three-year AIRMICS Multimedia Network
Design Study. Briefly, the study goals for the three years of the effort are as follows. 1In
the first year of the study. now completed, the goal was to create a closed-form analytical
queuing model for networks of queues. The second year of the study, now beginning, will build
on the effort of the first year by enhancing the utility of the network-of-queues model to
provide automated optimization capabilities. The third year of the study will attempt to in-
tegrate the use of this tool with a quantitative approach to define type mission of a communi-
cations system, and evaluating in an exact way the effects of the communication system on mis-
sion-oriented (not communications-oriented) metrics.

In the first year, a careful literature search was completed to determine the scope and depth
of the selected modeling technique and its applicability to large-scale complex communications
networks. The general result of this search was that the techniques of closed-form analysis
are applicable to certain important areas of network design., and in fact complement, rather
than replace, simulation techniques. The issues which can be dealt with by closed-form analy-
s1s relate to the proportioning of traffic across the availaitle media in the system.

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inciuge Area Coae)]l 22c. OFFICE SYMBOL
CPT Timothy M. O'Hare 404/894-3136 ASQB-G

DD FORM 1473, 84 MAR 83 APR edition may be used untii exhausted.

All other editions are obsolete. —SECURITY CLASSIFICATION OF THIS PAGE

MULTIMEDIA NETWORK DESIGN STUDY

FIRST YEAR FINAL REPORT

SUBMITTED BY
DR. JOHN R. DONER, PRINCIPAL INVESTIGATOR

HARRIS CORPORATION
GOVERNMENT COMMUNICATIONS SYSTEMS DIVISION
P.O. BOX 91000
MELBOURNE, FL 32902

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

3.1
.83.2

NN

w
o

WhBBAWNS
N =

2.1

2.2

2.2.
.2.2.
.2.2.
2.2
.2.2.
.2.2.
.2.2.
.2.2.
.2.2.

AAhAAADBDAAAALALDLOD

OONOOOMHEWNS=

TABLE OF CONTENTS

EXECUTIVE SUMMARY ..o e 2

THE RATIONALE FOR CLOSED-FORM

NETWORK QUEUEING ANALYSIS.. .. iiiiiiiiiiiiiiiiiiee s 4
Closed-Form Modeling as an Adjunct to Simulation.................. 4
An Explanation of the Closed-Form Network-of-Queues

Y Lo = T 7
Computational Considerations for the Closed-Form

B 1= T a2 1= 1O T = T PRI 14
The Computational Process in a closed Network........................ 15
The Computational Process in an Open Network........................ 16

CLOSED-FORM MODELING APPLIED TO

MULTIMEDIA COMMUNICATION . ..o 17
The Multimedia Network NO®.........ccooiioiiiiiiiiiiaiiiiiciainiiaaaene. 17
The Multimedia Network Composite Channel............................. 18
The Error Process for the Composite Channel........................... 19
Accounting fot Error Correction Traffic...............c.ooii. 20
Ermoneous Traffic Effects at the Transmitting Node..................... 21
Erroneocus Traffic Effects at the Receiving Node......................... 21
Computing Transmission Delays through the Network................ 22
INSTRUCTION MANUAL FOR THE MMDESIGN PROGRAM..... 24
Explanation of Program Inpuis...... ...ttt 24
Program Organization and Menus.cc.ciiiiiiiiiiiiiiiiiiiiiiiaaea.. 27
User Interface =TT 44 0 7= 1 S 27
Intepretation of the MenNUS.......c. it eiiaiatiiiieiaaiaaannn. 28
The "NOW™ COMMEBNG. ... ictiieatreetatreeaeaneraeaaanecaaaaeans 28
The "C(reate” COMMEBNG. .. iiiieeiaaaaatteaaeaanammacnaaraaanaaeeens 29
The “"E(dit” COMMIANG. ... iteaiciiareeareteeerasaseasancanaannaaaanns 30
The "H(ardcopy” Command. it e 31
The "R(ecall” COMMANG. ...ttt riieia it tsataatesaneaannanns 32
The "T(hruput” CoOmMMANd. ... 32
The “"P(aths” COMMIABNG. ... i taaiae e reee i eaaaaaaaaaaeenns 33
The "M(etrics” CoOMMANA. ... ittt aaeee caaaaas 34
The “Quit” COMMANG . ..t iaatee e e e et 35
Summary and Further Directions..............oiiiiiiiiiiin 36
REFERENCE S ... et 37
APPENDIX A - MMDESIGN MENU NAVIGATION.................... 38
APPENDIX B -- OPEN NETWORK MATHEMATICS............... . 39
APPENDIX C -- MMDESIGN SOURCE CODE.......................... 43

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
1

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

1.0 EXECUTIVE SUMMARY

This document provides a report on the first year of the three-year AIRMICS
Multimedia Network Design Study. B8riefly, the study goals for the three years of
the effort are as follows. In the first year of the study, now completed, the goal
was to create a closed-form analytical queueing model for communication
networks. The second year of the study, now beginning., will build on the effort of
the first year by enhancing the utility of the network-of-queues model to provide
automated optimization capabilities. The third year of the study will attempt to
integrate the use of this tool with a quantitative approach to defining the mission
of a communications system, and evaluating in an exact way the effects of the

communications system on missign-oriented (not communications-oriented)
metrics.

In the first year, a careful literature search was completed to determine the
scope and depth of the selected modeling technique and its applicability to large-
scale compiex communications networks. The general result of this search was
that the techniques of closed-form analysis are applicable to cenain important
areas of network design, and in fact complement, rather than replace, simulation
techniques. Closed-form analysis of networks can only deal with steady-state
equilibrium conditions in networks, such as the expected loading and delays in a
network for which offered tratfic. topology, and capacities have been allocated.
This is quite ditferent from the function that simulation performs, which is to study
the consequences ot specific scenanos in a network.

However, although simulation can yield very highly resolved insights into
network behavior, it does so on a rather ad hoc basis: the simulator can test at
most a very tew ot all possible communications scenarios which a network might
be calied upon to support. Closed-torm analysis can provide globally _pplicable
tacts about a network, which may lead to early recognition of misallocation of
capacity or potential for chronic overioad. Using closed-form techniques, the
network analyst can examine a wide rmange of network topologies and gain
general insight into their suitabinty to meet mission requirements given the
expected geographic and temporal vanations in tratfic load. These analyses will
be much more rapidly executed than simuiations, and the analyst can tairly rapidly
determine which of a few candchdale architectures appear in these general terms
1o support system requiremems S-mutation studies can then proceed on this
subset of architectures with the assurance that the candidate networks being
simulated are at least close 10 the bee! answer satistying system requirements.

Thus a well-executed deegQ~ program for a large communications network
should involve the interaction o' es~~saton and closed-torm analysis, with ciosed
form analysis being used for & gove estimaton of the correctness of the network
resource allocation, and simulal-on men following to test more specific aspects ot
the network design, such as routng estrateges Or survivability strategies. Such a
design strategy wili produce e more cenain, and a less expensive answer, than
will be obtained by simulaton sione

The intent of this study @ to apo’y closed-form analysis 1o mulitimedia
networks. A multimedia networ w~t carry multipie types of tratfic on multiple
media. Each traffic type will be more or less suited tor transmission on any given
medium, depending on the medwm bandwidth and error propenies. Each tratfic
type may have certain essential constrainta on 1its handling, reiated to tmehness
and maximum permissible error ascceptsbie for the trathc type. In a miinary

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
2

——

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

network designed for high survivability and maximum efficiency, the proper

multiplexing of traffic types on the media can be an important factor in achieving
such goals.

This requirement to muitiplex traffic types across various media could be
accomplished in several ways, such as allocating a specific proportion of each
medium to each traffic type. The extent to which each traffic type would meet its
timeliness and accuracy constraints would then be a function of that allocation.
Since not every traffic type can at all times travel by the medium that is "best™ for
it, a process of compromise is necessary. [t is precisely the determination of
such an “optimum™ compromise that is well served by the tools of closed-form
network modelling.

The body of this document provides a formal mathematical model of
muitimedia traffic flow which encompasses the concepts of muitiple traffic types,
and multiple media types. The interaction of channel error processes with the
traffic types is accurately captured, so that the muitiplexing of traffic types on
media types can be usefully analyzed. The primary output of this first year ot
effort is a computer program, called the MMDESIGN program which addresses
the above analysis concerns. This program prompts the network analyst for a
network design (i.e., topology, media, traffic types, routing, etc.), and then makes
available the expected path delays associated with any traffic type over any path,
or collection of paths. The program is designed as an iterative analysis tool: that
is, the manner in which data is gathered, stored, and edited facilitates the

analyst's normal activities in pursuit of the optimization of network performance
relative to traffic multiplexing concerns.

The MMDESIGN program is hosted on an IBM PC/AT (or equivalent) and is
written in Turbo Pascal, which is very widely available and well known to IBM PC
programmers. This choice of computer limits the size of the network that can be
handled, due to memory constraints. but the computer serves as a good base for
wide dissemination ot the program. The code is largely machine independent,
and so could easily be ported onto a larger machine.

The remaining sections of this document provide an explanation of the closed-
form modeling paradigm, its applicaton to multimedia networks, and its
implementation in the MMDESIGN program. Section 2 provides a rationale for
and a description of the closed-torm network-of-queues modeling paradigm.
Section 3 explains the manner n which multimedia communications can be cast
into that mold. Section 4 is a sell-contained manual for the use of the
MMDESIGN program. The appenc«ces 10 the document provide complete detail

and documentation of for both the mathematics and the computer code used in
the program.

MMODESIGN wiil be extended in the second year to consider inclusion ot
optimization techniques within the program, such as optimization of capacity
assignment and routing. The design of truly integrated multimedia
communications systems is in a pracucal sense still in its infancy. It is hoped that
this study will provide valuablie tools to the operational network design community

which must actually come to gnpe wath the next generation of communications
systems.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
3

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

2.0 THE RATIONALE FOR CLOSED-FORM NETWORK QUEUEING ANALYSIS

In this section, we will introduce the rationale for the closed-form
communications network modeling paradigm which has been the subject of this
study. We will also provide a rather comprehensive survey of the applicability of
the closed-form technique. This survey is not intended to be mathematically
detailed, but does introduce terminology and concepts for the purpose of
providing the reader with a comprehension of the general strengths and
weaknesses of the technique.

2.1 Closed-Form Modeling as an Adjunct to Simulation

Modem military communications systems are rapidly evolving to take
advantage of increasingly versatile communications technology. Procurement
planning for the near-term future calls for increasingly survivable communications
architectures which rely on an eclectic suite of communications assets. A major
interest of all the military services is to fully integrate the use of muiltiple
communications media into a single communications capability, the operation of
which requires as little user management and intervention as possible. Such a
system is expected to autonomously determine and ameliorate conditions
detrimental to the expeditious flow of information, thereby creating a whole that
functions better than the sum of its parts.

This idealized concept requires considerable innovation and experiment in the
discipline of network control. Systems will in general comprise larger collections
of assets, deal with a greater variety of traffic types, and be expected to handie
larger volumes of traffic. Such designs will tax not only the traditional
communications network design methods, but also the existing network design
tools by which such designs are refined trom concept to implementation.

The present study is a three-year effort funded by USA AIRMICS to consider
the emerging design problems discussed immediately above. The intent of this
study is to consider several concepts related to the design tools available to the
network design community, and to create tools complementary to those now
existing which will be specifically helptul in addressing the new multi-media,
large-scale network designs of the near future.

This document reports on the results of the first years effort, the establishment
of a closed-form network-of-queues approach to modeling communications
systems. Since most communications system design efforts rely heavily on
simulation of the network, the rationale tor creating a closed-form analytical
model of network communications needs explanation. Simulation is, in essence,
a process of determining single-point estimates of a very complex function. The
inputs to the simulation constitute the independent “variable™ (normally a multi-
dimensional vector) of the function, and the outputs trom the simulation constitute
the value (again, normally a multi-dimensional vector) of the function. The user
of the simulation selects an input value, runs the simulation, and obtains an output
value.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
4

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

Based on an iterative sequence of such simulation runs, together with
modification of the simulation and/or its parameters, many major aspects of the
network design may be determined. However, such simulation efforts generally
constitute a sort of intuitive optimization process where the output of each
simulation step guides the designer toward changes in the network design which
will (it is hoped) provide better performance in the next simulation. In effect, the
simulation user is attempting to discover the shape of a surface in a many-
dimensional space by examining a sequence of "points” on that surface. and then
selecting another value for the input argument to the function (i.e., simulation),
which will move the output "point” uphill. This process is somewhat like that
pictured in Figure 2 - 1 below. Since the simulator can only guess at the shape of
the surface near the set of "points” already collected, it is never possible to assure
that a network design based on simulation has actually achieved optimum
performance within the design constraints.

SIMULATION
RESULTS

FIGURE 2 - 1: Simulation "Mountaineering™

Ot course, the simulator, by examining as many “points™ as possible on the
simulation surface, can reduce the likelihood that there might be a better solution
"near” the final chosen network design. But simulation as applied to modern and
future military network designs tends to be expensive, and the number of events
and communications paths to be simulated tends to grow combinatorially with the
number of network nodes. As future networks move toward integration of all
available media, it will be impossible 10 decompose the systems into muitiple small
networks, and so the need to handie very large numbers of events and assets in
a single simulation will grow.

Having thus examined the conceptual and practical limitations ot simulation, in
what way can a closed-form, network-of-queues model contribute to network
design? First, it should be admitted that such closed-form modeis are almost
always bypassed in network design studies in favor of simulation. The reason tor
this is that a closed-form model can only model the functioning of a retwork
operating in steady-state performance. Clearly, designers of military
communications systems are very interested in guaging the response of the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
5

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

network to many types of transient effects, and so cannot rely solely on steady-
state network performance to select the parameters of their system. However,
when only simulation is used, the steady-state performance can only be
determined by long simulation runs, and each small change of input conditions
may require another simulation run to obtain the changed steady-state.

Steady-state quantification within a closed-form network-of-queues paradigm
is a much more convenient process. It is safe to say that a network designer
could determine a great number of steady-state network solutions in the time
required to determine a single steady-state solution by simulation. Moreover,
since the closed-form model is analytical (i.e., expressed in terms of equations) in
nature, there is the possibility of applying optimization procedures to the
equations that describe the model, thereby obtaining a network design optimized
in some respects directly from a single computer run ot the model. Furthermore,
this result may be a true optimum, rather than just a local maximum, as is more
likely to happen when the optimization process proceeds essentially intuitively by
means of simulation.

It is precisely this observation that justifies the use of a closed-form steady-
state model of the system not in lieu of, but as an important adjunct to simulation.
The designer then has an appropriate tool (simulation) by which to study system
transient response, but can also more accurately "size” the network in terms of
total assets required to meet the traffic demand of the system. An appropriate
network design trajectory then uses the closed-form model to gain a giobal
understanding of the network topology and link capacities required to efficiently
meet the overall capacity demand at all points in the system. From this overview,
simulation effort commences to resolve the more specific concerns of protocol
development and allocation of resources at the individual nodes.

This interplay of simulation and closed-form analysis can also be used to
advantage at later stages of system analysis. When network performance is to be
analyzed over a range ot scenarios including hostile actions against the system,
simulations are usually done to demonstrate the manner in which the system
recovers from loss of assets. Again, simulation is used here to examine system
transient response as it moves from one steady-state (i.e., fully capabie) to
another. However, as was the case for design of the full network, it simulation is
the only tool applied to this situation , then not all available information is being
used. l.e., if the network transits from a fully capable state to an impaired state,
then each of these states, through appropriate allocation of assets, can achieve
some optimal performance relative to the network mission. If the optimum
configuration in both circumstances is known, then simulation effort can be
directed at fine-tuning network algorithms so as to obtain the transient response
which moves the system toward its new steady-state in the most effective
manner,

Summarizing the above points, simulation by itselt is usually not adequate for a
determination of the true optima possible for a network. As communications
networks come to include ever larger suites of equipment, all integrated to serve
as a single system, simulation alone wiil become less able to determine the best
use of all the system assets, and the use of closed-torrn network-of-queues
modaeling will provide a valuable adjunct to the simulation etfort. R does not
provide the ability to examine specific protocols and routing techniques, as

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
6

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

simulation does, but it does permit the possibility of better global optimization and
distribution of assets. A large-scale network design effort will generally be better
served by using closed-form and simulation techniques together.

2.2 An Explanation of the Closed-Form Network-of-Queues Model

The terminology "closed-form” usually refers to tachnical results expressed in
an equational format, such that all input parameters are independent variabies of
the equations, and the desired outputs are obtained by direct solution of the
equations. When the technology in question is too complex to admit of such
representations, it is usually necessary to rely on some sort of iterative solution
procaedure based directly on a mechanical characterization of the system
interdependencies and how they serve to dynamically alter the system state.
Solutions of problems in finite element analysis, in iterated differential (or
difference) equations, and in simulation of system interactions alil represent this
genre of problem solution.

As was stated in the last section, most iterative solution techniques provide
answers where no closaed-form technique is available. Closed-torm techniques.
when available, have the intrinsic advantage of permmitting mathematicai
manipulation and analysis of the equations involved, thereby providing the
application of the great range of powerfui mathematical optimization techniques
available in the rich literature of optimization theory (see, e.g.. [1] and [2]).

In the specific technology of queueing theory, the usual situation is that
closed-form queueing techniques are confined to the characterization of single
qQueues, or perhaps parallel queues with parallel servers all operating at a single
service location. Most elementary queueing theory texts limit the development of
the subject to such situations, and do not endeavor to discuss networks of queues
at all. However, there is an extensive literature on this subject which has been
evolving for about three decades. ang has only recently found its way into
textbooks and large-scale applicauons

Some of the eariest work toward exiending queueing theory to networks of
queues was done by R.R.P. Jackason (see [3]) in 18954, The main supposition
which allows queueing etffecta at one node to be visited in an analytically tractabie
way upon the activities at other nodee 8 the assumption that the future behavior
of the system as a whole is depencgem on past behavior only in terms of the
current customer backlogs in the system nodes. Making this assumption tended
to place certain limits on the vanety of queueing protocols which could be
modeled, and some of these imns will be discussed below. Substantial progress
was made after these early papers by vanous scholars, and the type of network in
which the future of the entire networ sysiem could be determined solely from the
present state of the queuaes at all nodes became known as “product-form”
networks. A very significant paper n thie area was published by four authors (see
{4]). Baskett, Chandy, Muntz, angd Peiacios The paper puilled together some of
the disparate results in the area. and also extended the product-forrm queueing
model to a wide and coherently descnbed set of conditions. Lemoine gives an
excellent survey of the technoilogy n [S]. and Lavenberg discusses the practical
computational aspects of the techruque in Chapter 3 of his excellent textbook,
Computer Performance Modehng Handbook, [6).

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
7

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

The exposition to be given in this section will follow the form, but not
necessarily the notation, of the BCMP paper. Also. the exposition in this section
will try to provide the reader with a sense of the scope to which the product-form
network theory can be applied, while leaving explicit mathematical development to
Appendix B.

It will, however, be necessary to introduce some symbolic notation. First,
suppose that

N = number of service centers (nodes)
in the system, and

R = number of classes of traffic.

These classes of traffic are distinct from each other in that they can follow distinct
routing schemes, and have distinct service time and arrival rate distributions at
the nodes. Routing is defined probabilistically in such a network by

P{(i.r). (.s)] = probability that traffic of class r, at node i
will transit to traffic of class s, node j.

These are called routing transition probabilities, and are normally considered to
be expressed as an NRxNR matrix which has great convenience for
computational purposes. There is a simplification of notation possible here which
does not affect the applicability of the above equation, and that is to regard
customers of the same class at different nodes as being designated by different

class indices. This evades the need to consider a matrix indexed by pairs, so we
can then write the matrix P[] as

Pfi. j] = probability that a customer of class
i will transit to class j. (Equation 2 -~ 1)

Thus, routing permits traffic to move between traffic classes and service nodes in
a single transition. However, the fact that routing is probabilistic means that no
parnicular traffic entity travels any specific route through the system: the routing
paradigm permits statements about average channel utilization and expected
traffic flows along links to be made, but does not support a completely detailed
routing plan. This is the reason that closed-form models cannot replace
simulation for the purpose of examining the detailed effects of routing algorithms.

In most queueing situations such as this, certain traftic classes travel in closed
routing chains. l.e., not all possible transitions between traffic classes may occur,
and not all traffic classes visit all nodes. In typical mathematical fashion, the
analyst can seize upon this opportunity to study the entire problem as a sequence
of sub-problems. Thus, without too careful a formal exposition, we define a
routing chain as consisting ot a subset of traffic classes and a subset of nodes
such that the traffic classes only transit among themselives, and the traffic classes
involved only circulate among the nodes in the subset. This does not say that
other traffic classes do not also pass through these nodes: aiso, if multiple routing
chains do pass through the same queues, the overall state of that queue can be
expressed from the analysis of the separate routing chains. In this way, the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
8

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

analysis of the entire system can be done by analyzing the separate routing
chains, and then extending these results to the interactions of the routing chains
in order to assess the complete network system. Thus we will first describe the
terminology and results associated with a single routing chain.

A routing chain is called closed if the total count of customers in the chain
remains constant over time. Where this is not the case, the routing chain is gpen.
Closed systems are often used to model the processing interactions and delays in
a computer time-sharing system, where some constant number of tasks are
being “simuitaneously” served by several types of system servers (e.g., disk
access, printer access, terminal access, CPU access), and the same number of
jobs shuttle from one service to another. Computer system designers can judge
the expectations of processing delay and resource utilization for a steady-state
load of a given constant number of on-line time-shared jobs by formulating such
a closed network of queues. Open routing chains may have arriving and
departing customers, and thus one does not a prion know what total number of
customers will be in the system at any moment.

We have progressed far enough now to state the most important
computational advantage of product-forrn networks. The “state™ of a product
form network at any moment is (by earlier assumptions) given entirely in terms of
the lengths and compositions (in terms of numbers of customers of each
customer type) of the queues at the various nodes. l.e., the basic tenet upon
which the product-form of network analysis rests is that the future of the network
depends only on the present condition of the queues at ail the service centers.
Thus, the state of the network is equivalent to the collective states of the nodes,
and the state of any node is entirely determined by the numbers of each class of
customaer in the queue of that node. Thus, if Sp is an R-dimensional vector the
components of which represent the numbers of customers of each type in queue
at node p, then

(84, S2, .., SN)

represents the state of the entire network. It Pr{.} represents the probability of an
event described within the brackets, then we may state that

Pri(S1, Sz, SN)} = Pr{S1}Pr{S2}...Pr{SN} (Equation 2 - 2).

This equation states that the probability of the global state of the system, as
represented by all of the individual queue vectors S is equal to the product of the
probabilities of the respective queueing situations arising individually at the
separate nodes. l.e., there are no intermodal effects and dependencies to atfect
the analysis, and we may divide and conquer the analysis problem by focusing on
the behavior of a single node. The main result of the analysis is to provide
closed-torm expressions for the values Pr{Si}, from which nodal response time,
link utilizations, path delays, and other standard queueing metrice can be derived.

Having reduced the problem to examining single nodes in a single routing
chain, we now taxonomize the types of queueing disciplines that may be treated
by this analysis. First, all arrivals to the network have the Poisson distnbution, and
separate traffic classes may have separate arrival rates. The arrival rate for a
given traffic class is usually defined globally as a single Poisson process which is

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
e

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

then subdivided among the nodes by a constant probability distribution, but it is
equivalent to consider separate Poisson arrival rates at the individual nodes which
sum to the global rate (the former conceptualization is more practical in terms of
the mathematics of the model). The Poisson arrival rate to the system for any
customer class need not be constant: it can be an arbitrary function dependent
upon the number of customers of that class already in the system.

Of course, in a closed system, all arrival rates are taken to be zero. In an
open system, if there are arrivals, then there must also be deparnures; the
departure process is normally formulated in terms of a single "sink” for each traffic
type, with traffic of that type being routed to the sink from each node via a routing
transition probability. (This is logistically equivalent to some means of allowing
customers to leave the system at individual nodes.) Thus the departure of tratfic
from the system is easily encompassed in the routing transition probability
structure described by equation 2 - 1.

The final major element of the model has to do with aliowable queueing
disciplines and service time distributions. Product form assumptions car be
realized for the following four general types of Queueing disciplines. (Some other
queueing disciplines have been shown to yield product form networks, but only for
speacialized topologies: e.g., see [7].)

The first queueing protocol permitted is the very common first-in, first-out
(FIFO) queue. This is the most commonly encountered queue, where customers
are placed in the queue in the order of their arrival, and are served in order ot
their arrival. Thus a newly armrived customer waits behind all previously arrived
customers, and is served only after all previously arrived customers have
completed service. Such a queue is illustrated in Figure 2 - 2. It a service node
has a FIFO queue, then all customers which pass through that node are subject
to the same exponential service time distribution.

ARRIVALS
NEWEST OLDEST
CUSTOMER e ¢ o CUSTOMER
SERVICE
EXIT FROM
SYSTEM

Figure 2 - 2 -- The First-in, First-Out (FIFO) Queue

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
10

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

The second type of queueing protocol possible at a service node is the
processor-sharing (PS) mode of queueing. In this type of queueing, all
customers at the node simultaneously share the server. Thus, each newly
arriving customer receives immediate service, but the server accomplishes this
instantaneous response only by slowing down the service rate at which all already
present customers are served. Thus if the overall service rate is i, then when K
customers are present at the node each customer is served at rate k. This type
of queueing occurs in time-shared computer systems, and is illustrated in Figure
2 - 3.

OLDEST < S
CUSTOMER 7 |
NEXT
OLDEST > M S
CUSTOMER U E
L
* T R .. EXIT FROM
\V - SYSTEM
A
|]
N ¢
[] E E
O
U
NEWEST
CUSTOMER > | S
®

Figure 2 - 3: The Processor-Shared Queueing Discipl. 1e

Customers at a PS node can have distinct service rates, depending on their
customer class. The service rate distribution can be any probability distribution
with a rational Laplace transform. In effect, this means that the service operation
can be thought of as consisting of a sequence of exponential service operations,
each with independently determined mean, and with the possibility of the
customer exiting the service after any one of the service steps. This type of
service is depicted in Figure 2 - 4.

it a service operation of this type for customer class i contains only a single
service operation, the service time distribution will be exponential. In this case,
the only parameter of the service rate is u;, and 1/, the mean service time, can
then be an arbitrary tunction of the number ot customers of type i at the service
center. Thus, u; can be expressed as a discrete function

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
11

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

mi(1). pi(2), ..., 1i@). ...,

where the argument j repraesents the number of customers of type i at the node.

CONSECUTIVE EXPONENTIAL
SERVICE STAGES

CUSTOMER
ENTRY

CUSTOMER
EXIT

Figure 2 - 4 -- Schematic of Laplacian Distribution

The third type of queueing permitted at a service node is called infinite server
(I1S) queuseing. In this case, the node always has mnore servers aveilable than
there are customers present in the node. The delay through such a node is thus
strictly the service time delay associated with the customer class. The limitations
on the service time distribution in this case are identical to those for the PS node
described above. This node is illustrated in Figure 2 - 5.

IS nodes do not exist in real-world queueing systems, but they are usetul
when a single stage of delay is desired for a customer, with the delay being
independent of other customer congestion in the system. E.g., in a
communications system, a message which has waited behind other messages for
access to a channel may, at the beginning of its actual transmission, wait for a
channe! access sliot 1o become available in a round robin token-passing
arrangement. This final short delay before transmission has nothing to do with
other traffic in the system, and can be conveniently modeled by the IS queue.

The final form of queueing which is possible for product-form service nodes is
last-come, first-served (LCFS) queueing. In this type of queueing, any newly
arrived customer will preempt a customer already in servic:3, and service for the
preempted customer will then be suspended until the new customer has
completed service. When a customer completes service, the most recently
preempted customer resumes searvice. This type of service is evident, for
example, in computer operating systems, where an interrupt to a processor
causes the processor to suspend service to the present task and tum attention to
servicing the interrupt. [f another interrupt occurs during the service of the first

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
12

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

IST ____ 5| SERVER

CUSTOMER
2ND ___ 3 | SERVER
CUSTOMER
[]]
[] []
° ¢ — 3 EXIT
SYSTEM
LAST
———— | SERVER
CUSTOMER
SERVER
[
[]
9

Figure 2 - 5: Infinite Server Queuesing

interrupt, then the latter interrupt preempts the present interrupt. (Of course,
many computer systems now have a pnoritized interrupt structure, so that strict
LCFS queueing would not apply.) LCFS queueing is illustrated Figure 2 -6.

The service time distributions possible for LCFS queueing are identical to
those for PS and IS queueing. However, there is an added subtlety here,
because preemptive queueing processes may Or may not conserve the work
already done on a customer. In the case of product-form LCFS queueing, the
preemption is somewhere between conserving and non-conserving. Specificaliy,
it the preempted customer has a mufuple-stage service time distrnbution (see
Figure 2 --3), then the customer e returned to service at the beginning of the
stage in which preemption took pisce te.. the service already performed in
earlier stages is preserved at preemption, but the service already performed at
the current stage is lost. A final observauon is that, tor one-stage service time
distributions, it follows that the preemption 1§ non-conserving.

This effectively completes the descnption of the general topological and
queueing models available tor product form networks of Queues. A given service
center in such a network may apply sny ot the above ftour forms of queueing, and
the fiow of tratfic, although stochastc. permits a customer of any class at any
node to transit to any class and any node It should be pointed out that

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
13

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

CUSTOMER
BEFORE
PREVIOUS

AOD~W

PREVIOUS
CUSTOMER

N

ENTER \ 4 EXIT
SYSTEM LATEST SYSTEM
CUSTOMER,

IN

SERVICE

\ 4

v

Figure 2 - 6: Last-Come, First-Served (LCFS) Queueing

customers can be effectively "deterministically” routed in this system by setting the
appropriate transition probabilities equal to one. Also, it should be mentioned that
the "service node™ as described here is a mathematical artifact in terms of which
the product form theory has been developed. In practice, the concept of a service
node may involve several steps of processing of traffic in series and parallel
combinations of the product-form service nodes. Thus, an actual
communications network node may not be realistically reducible to a single node
of one of the above types, but the delays and actions of the communications node
may be adequately expressible in terms of a combination of the product-form
nodes.

For example, suppose that we have a multimedia node at which messages of
different types arrive. This node may be both processor-limited and bandwidth-
limited, so that the nodal processing slows in proportion to the traffic in the node,
and the traffic also backs up in queue at the output, waiting for service on the
various media channels available . Such a node might best be modeled by a PS
queue, followed by a FIFO queue.

2.3 Computational Considerations for the Closed-Form Technique
The present discussion would be incomplete without some reference to the

practical computational complexity of applying the product-form network-of-

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
14

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

queues model. The difficulty associated with practical computation depends on
whether the network is an open or closed network. The reason for this is that a
fundamental quantity by which expected nodal loading, and thus all derived
performance measures, are guaged is the “relative throughput™ of each traffic
class entering a node. The relative throughputs of a given customer class at a
node is related to the routing in the system from all other nodes by the equation

yd = P[0,d] + 2 ycPlc.d] (Equation 2 - 3)
ceC

where the yg are the relative throughputs (one for each customer class/node pair
in the network), and P[0.d] represents the arrivals to the class/node of new
customers of the class d. The summation is taken over C, the set of all customer
classes defined for the network. (The meaning of customer class follows the
convention that each node/class combination is a distinct class, as was introduced
in connection with Equation 2 - 1.) The situation now bacomes quite ditferant for

open and closed networks, so these two situations will be treated separately in the
following subsections.

2.3.1 The Computational Process in a Closed Network

The greatest computational difficuity arises from the fact that in a closed
network, the quantities P{0.d] are all zero because there are no new arrivals to
the system. The set of equations 2 - 3, with the quantities P[0.d] all set to zero,
are linearly dependent because the coefficient matrix of the equations is
Markovian and therefore has the sum of all columns equal to a vector of 1's. The

result is that the relative throughputs, when solved for ciosed-form networks, are
determined up to an unknown factor, i.e., the true class throughputs in the

system constitute a vector which is a scalar muitiple of the relative throughputs.
The relationship is thus

V1, Y2, ..., YL) = (ay1, ay2, B «ayp) (Equation 2 - 4)

where
Yi = the absoiute throughput for class i, and

a = the unknown constant relating absolute and
relative throughputs.

The unknown value « is called the normalization constant. The process of
determining o constitutes the bulk of the computational effort required to make
the algorithm computationally feasible.

The unknown scalar a can be determined using the relative throughputs, by
summing the values of the distribution

Pr{(S1, S2, .., SN)} = Pr{S,}Pr{S2)}...Pr{Spn;}

(see Equation 2 - 2) which theoretically must add to ocne. When the tactors on
the right are individually computed, using the relative throughputs, and the
probability density in equation 2 - 2 is summed over all possible values of the

nodal state vectors 89 Sz _ SpN. the resulting sum will be in error by exactly the
tactor o..

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
15

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

Although straightforward enough in concept, this summation can be very
large, since it etfectively involves enumerating ail possible combinations of queue
backlogs jointly considered over all nodes. (However, since there are a fixed
number of customers in a closed network, the computation is not infinite.)

A great many of the papers in this field have been devoted to decreasing the
computational complexity associated with this step. Three main techniques are
prominent, each of which may be favored under certain circumstances (see [6],
pp. 145 - 151 for an excellent exposition of these techniques). The three
techniques are known as recursion, mean value analysis, and the local balance
aigorithm for normalizing constants. Two very recent major algorithmic
approaches to the computation of normalization constants are the RECAL
algorithm described in [8] and the DAC algorithm discussed in (9].

2.3.2 Computational Process in an Open Network

The great difficulty invoived in computing normaiization constants for closad
networks disappears completely for open networks. That is because in Equation
2 - 3, the arrival rates are non-zero, and so the linear equations are no longer
singular. Consequently, the main computational difficulty is simply to solve the
linear equations represented by Equation 2 - 3. This effectively can be done by
any of a large number of efficient matrix inversion techniques. Generally, the
major limitation of the technique for the open network is the size of the matrix of
routing transition probabilities. Bear in mind, however, that where the customers
in the system break into a number of disjoint routing chains, the full set of
equations represented by Equation 2 - 3 also decomposes into smaller sets of
disjoint independent equation sets. In the types of network applications that we
will pursue, we will normally be dealing with open networks. decomposabie into a
number of disjoint routing chains (in tact, one chain for each traffic type).
Therefore, the computational effort described in this section need not reflect the
full complexity of the network in a single large set of linear equations.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
16

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

3.0 CLOSED-FORM MODELING APPLIED TO MULTIMEDIA COMMUNICATION

The previous section of this document gave the reader a survey of the
applicability of the closed-form, network-of-queues modeling techniques, and of
the computational compleaxities invoived. Based on that survey, the present
section will examine the multimedia communications network, and provide a
modeling paradigm for that network which utilizes product-form network-of-
queues techniques.

Before launching into this development, it will be worthwhile to clearly state that
the purpose of this modeling effort is to provide a means of studying the
multiplexing of traffic typaes on the media types in a multimedia network in such a
way that a fully integrated multimedia network (as opposed to a collection ot
separate single-medium networks sharing common nodes) results, with optimum
use of the media relative to the characteristics of the traffic types.

A tinal point that should be mentioned is that the model developed here is in
effect a prototype, and is kept fairly simpie for that reason. It treats the network in
a rather simplified form, and is limited in scope to the examination of traffic
loading issues in the system. Since this is the first years output for a three-year
study, the prototype will be expanded in many ways to serve a more detailed set
of issues in multimedia networks. To what extent this prototype can be expanded
in scope will depend on further experience gained with the prototype and with the
computational efficiency of the prototype. This can only be ascertained after the

prototype has been exercised over some range of examples in the second year of
the study.

This section includes some mathematical development which is essential to
understanding how the closed-form modeling paradigm has been adapted to
multimedia communications networks. The mathematics developed here is not
part of the general mathematica of product-torm networks of queues; it was
developed explicitly to correctly represent multimedia communications concepts in
terms of the product-form model. A user of the MMDESIGN program must
understard the concepts in this secuon in order to intelligently apply the
MMDESIGN program to design issues.

3.1 The Multimedia Network Nodce

A multimedia network node wnail be characterized for our purposes as a node
which accepts traffic from other nodes. and on various input links, and can then
pass traffic from itself to other noces along various links. The links entering and
leaving the node can be supponed by vanous media and modulation types, and
the traffic entering and leaving the node can be of different types. The main
distinctions which will be drawn between media in this mode! will be the
bandwidths which each medium mahkes available for tratfic, and the signal
degradation properties of the mediunvmodulation pair as it effects each traffic
type's error rate. The main distincuon between traffic types that will be drawn will
be the differing error rates induced by the various media, and the mechanisms by
which erroneous traffic is handied

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
17

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

internal to the network node, we must identify a queueing discipline which is
compatible with those supported by the product-form model, and is also
compatible with our desire to model traffic flow realistically in a communications
system. Of the four queueing disciplines available (see Section 2.2), the FIFO
discipline is the most reasonable match to ordinary traffic queueing. lLe., traffic
leaving a node may need to be queued because the bandwidth available on some
medium is less than required to immediately service the current traffic offered.

However, an irritating complication arises if we simply try to model each
medium leaving a node as a single FIFO queue, and that is that the FIFO
queueing discipline for product-form networks constrains all customers entering
the queue to have the same service time distribution. This would be acceptable if
a single traffic type were to be matched to each medium, but it will not do if we are

to accurately reflect the transmission of muitiple types of traffic on a single
medium.

The remaining qQueueing disciplines allowable for product-form networks permit
separate customer classes in the queue to have separate service time
distributions. These three queueing disciplines however (i.e., processor sharing,
infinite servers, and last-come, first-served) do not intuitively map well into our
concept of traffic queueing at a node, and would not provide an applicable model.

The consequence of all this is that the FIFO queue should somehow be used,
but should be limited to serving a singie traffic type. Fortunately, this is possible
to do in a credible way, and this will be the subject of the next section.

3.2 The Multimedia Network Composite Channel

As was mentioned immediately above, we cannot model separate media
channels as separate queues within the constraints of the product-form model
uniess we attribute the same service time distribution to all traffic using that
channel. This would seem to preciude the multiplexing of muitiple traffic types
(each of which may have its own distinct service time distribution) on a single
channel. In order to circumvent this problem, we will instead regard a channel as

carrying a single traffic type, and we will in effect muitiplex the channels for the
traffic type.

In order to explain this concept, we must introduce some notation. Given a
single traffic type j at a specific node i, that traffic type is to be multiplexed on the
various media available for transmission. Define a trafficvmedium multiplexing
vector as

M“ - (mij1. miiz' .

... mipy,

where

mijk = the proportion of medium k to be devoted to
traffic type j at node i, and

T = the number of media available at the node.

Traffic type j at node | will be apponioned as shown on the various availabile

media. This means that the proportion m”k of medium k is set set aside

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
18

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

exclusively for traffic of type j.

In effect, this defines a composite channel for tratfic of type j. The bandwidth
of the composite channel is expressible as the sum of the proportions of the
bandwidths of the media channeis partially supporting the traffic type. To be

precise, if medium k has bandwidth Bik at the node i, then the total bandwidth
allocated to traffic type j is

T

B = > miikBix (Equation 3 - 1)
K =1

The advantage of the composite channel concept is that it presents to the traffic
type in question a total bandwidth available, as per the multiplexing scheme of the
node, and it allows the representation of the separate traffic types as traveling on
separate channels. In this way, all traffic entering a composite channel is of the
same type, i.e., has a single service time distribution, and so the queueing
discipline associated with the composite channel can be taken to be FIFO.

The composite channel must also be considered from the standpoint of error
processes acting on traffic. This will be examined in the next section.

3.3 The Error Process for the Composite Channel

The composite channel comprises, for its related traffic type, a collection of
fractions of media channels, each of which may have different error properties
relative to the traffic type. The composite channel error rate is therefore
dependent on the specific proportions of the various media available to the traffic
type for which the composite channel is defined.

Before carrying this reasoning to a precise expression, it will be useful to
quantify the error process somewhat more than it previously has been. For each
medium/modulation combination, there is some form of signal degradation
representing the usual operational characteristics of the medium so modulated.
Whatever form this degradation takes, it will affect any specific traffic type to an
extent depending on the error-correcting mechanisms built into that traffic type.
For the purposes of the current model, we will assume that all traffic types can be
thought of loosely as "messages™ (the term “packet” seems too dangerously
specific), and for each mediumaratfic type combination, a missed message rate
(MMR) will be determined based on a careful analysis of both the
medium/modulation and the traffic type.

Thus for traffic type j and medium k, we will denote a missed message rate
(MMR) by Ejk. The composite channel can be assumed to carry traffic in direct
proportion to the band width allotted per medium type. 8o the composite error rate
for traffic type |} at node i should be expressed as

T

Ej= z m"kEjk (Equation 3 - 2).
k=1

This error rate is thus interpreted to be an overall missed message rate for the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
19

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

composite channel. The average missed message rate for all traffic of this type
traveling on the composite channel will correspond to this MMR.

3.4 Accounting for Ermror Correction Traffic

The subsection above dealt with determining the error rate for a composite
channel relative to the traffic type that will flow on that channel. The error rate will
be applied to determine how many messages (in the present circumstances, the
term "messages” will be regarded as a generic term for separate traffic entities)
transmitted on the composite channel will be received in unacceptable condition.
When received traffic is unacceptable or unusable, there are generally three
possible responses to the situation:

(1) the traffic is discarded, with no need for a repeated transmission,

(2) the traffic has substantial forward error correction built in, so the
receiving node can rescolve the problem with no further use of
communications links

(3) the traffic must be retransmitted.

For the purposes of the present model, we are only concerned with processes
that increase the burden of the available media. Therefore, we need only
concern ourselves with error handling of the third kind. For such error handling
procoesses, we shall assume that each message subject to error correction, when
received correctly, is acknowledged by the receiving station. This
acknowledgement will generally consist of a short message returned to the
transmitting node using the same composite channel. If the received message is
not correct, then no acknowledgement ie sent.

There are several ways in which the mechanisms of such error handling could
be modeled. In keeping with the philosophy of steady-state modeling, we must
bear in mind that the purpose of this model is not to follow specific tratfic entities
through the system, but rather to guage overall traffic congestion and delay
through the system. (Actually, since routing in the product-form model is not
deterministic, there is no way to account on a message-by-message basis for
erroneous traffic transmission.) Therefore, so long as the additional traffic load
imposed by error correction is modeled, it is not necessary to actually implement
flow paths representing the handling of acknowledgements and retransmissions.

What additional traffic loads are imposed by this error correction scheme?
First, there is the additional load arising trom the need to transmit repeats of
erroneous traffic along the original path. Second, there is the need at the
receiving end to generate and retum acknowledgements to the transmitting
station for correctly received traffic entities. We wili account for all effects of
erroneocus messages by adding an extra load at the transmit node which is
equivalent to the additional traffic it must transmit due to the error process. Since
the extra load occupies the same FIFO queue as all normal tratfic for the attected
composite channel, the overall effect on the system is an additional amount of
delay in the node due to the need to requeue and retransmit some fraction of the
channel traffic. For the acknowledgement process, the extra load is imposed on

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
20

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

the receiving node, since it must use some of its transmit capacity 10 queue and
transmit an acknowledgemaent.

To adequately account for these added traffic loads, it is necessary to analyze
the intensity of traffic flow for the traffic type in question, and then use that
intensity figure to calculate the extra traffic loading imposed on the queues in both
the transmitting and receiving node. We will do this in the two subsections below.

3.4.1 Erroneous Traffic Effects at the Transmitting Node

It we are dealing with a specific traffic type t, the added load at the transmitting
node is a function of its mean length Iy and the missed message rate E; for the

traffic type. In particular, for every original message transmitted, the total ioad at
the transmit node is just

St = (1 - Ep + 2i(1 - EPEy + (1 - EPE2 +. ..

This infinite summation does have a closed torm for 0 < E; < 1, and yields

St = k (1-Ep ! (Equation 3 - 3)

In effect, this is the expected length of all traftfic generated at this node associated
with the original message. By lengthening the nominal tratfic length Ik to this
value, we have imposed the desired additional load on the node.

3.4.2 Erroneous Traffic Etfects at the Receiving Node

We will handle the etfects of acknowledgements on the traffic process by also
increasing the length of each type t message handled to account for the
acknowledgement it requires back to the previous node. However, not all tratfic of
type t which is in queue at the receiving node has actually been received from
other nodes. lLe., the traffic in queue at the node is generally a mixture ot
received traffic, and traffic originated at the receiving node. Obviously, the node
need not generate acknowledgements for traffic internally originated, therefore
only some fraction of the type t traffic actually imposes a load on the node. Thus,
in order to assess the load at the node correctly, we wish to determine the fraction

of traffic of type t originated in the node. relative to ail type t tratfic processed by
the node.

This is not actually a difficult thing 10 do, since we have available the relative
throughputs from Equation 2 - 3 . In terms of the notation of Equation 2 - 3,
suppose that P[0,d] represents the originations for traffic type t. and that yd
represents the relative throughput of traffic type t at the receiving node. Then the
fraction of traffic which represents local originations of traffic type t, compared to
all traffic of type t processed by the node is

vy = P[0, dyyg (Equation 3 - 4).

Then the average length for all type t messages processed by the node is given

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
21

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

by

St=vilhh (1 -E)1l « (1-w) k(1 -EY' + ay (Equation 3 - S)

where
ay = longth of the required acknowledgement for traffic type t..

Thus, the overall additional load imposed by the error process is visited on the
system effectively by increasing the length of each message to account for its
retransmissions by the system, and the acknowledgements sent on its behalf.
Thus given the quantities , Ey , and a; , we can calculate for each node (note
that it is a function of each individual node's traffic type t throughput and
origination rate) the length S for the traffic of type t at that node. This effectively
determines the service rate for that traffic type at that node.

Suppose that we are dealing instead with the situation where acknowledge-
ments are sent “"out-of-band”, i.e., on a channel other than the one which carries
the original traffic. Then the additional load on the original traffic channel reverts
back to the value S'y. The remaining part of the traffic generated is the out-of-
band component associated with the acknowledgement process, i.e., just the
load associated with the generation and transmission of the correct proportion of
acknowledgements for the traffic type. That will be given by the difference

St - Sh.

3.5 Computing Transmission Delays through the Network

The final remaining topic which is to be considered in this section has to do
with the means by which path delay through the network can be computed. For
the open network product-form model, the computation of all nodal performance
metrics is very straightforward once the linear equations (Equations 2 - 3)
determining the relative throughputs have been soived. One of the nodal
performance metrics available is the mean nodal response time (i.e., queueing
delay plus service deilay) for each traffic type passing through the node. (See
Appendix B for the derivations of system peformance parameters from the reiative
throughputs.) In order to compute the expected delay for any traffic type along a

path through the network, one can add the mean nodal response times for the
nodes along that path.

However, if what is desired is an average delay for traffic over a multiplicity of
paths, then one cannot simply take the unweighted average of the path delays
described in the above paragraph. That is because one cannot assume that
equal amounts of the traffic of interest fiowed via the varnous paths. Thus, we
must find a means to account for the relative proportion of traffic that flowed along
any one path among a collection of paths of interest.

This can be done by reference back to the relative throughputs defined by
Equation 2 - 3 . Specifically, let

P-<81.82.....ln(p) >

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
22

MULTIMEDIA NETWORK DESIGN STUuDY -- FIRST YEAR FINAL REPORT

represent a path through the network, with s41 being the first node, s2 being the
second node, etc. The expected path delay along this path for traffic type t will be

the sum of the expected response times for traffic type t at each node included in
the path. Let

Dt(P) = expected delay for traffic of type t traversing path P.

Then if we have another path Q connecting the same origin and destinatior_a, a
constant a must be such that the expected delay for all type t traffic traveling
between these endpoints on both paths can be expressed as

E[Di(P or Q)] = a D¢(P) + (1 - a)D¢(Q).

We determine the constant a from the reiative throughputs of the nodes (for traffic
type t) and the routing transition probabilities. Beginning at the next to the last
node on path P, the propcntion of all type t traffic through the node destined for
node sn(p) is given by the routing transition probability Pysn(p) - 1. sn(p)l:
multiplying this by the relative throughput yy n(p) - 1 of node sn(p) - 1. i.0.,

Plsnpp) - 1. sn(p)] yin(p) - 1.

Qives a relative measure of the type t traffic traveling this link. Now, from this
quantity of tratfic, we wish to know what portion arrived at node sn(p) - 1 from
the preceding node, sn(p) - 2. Applying the same reasoning to this situation, we
determine a measure of the relative traffic of type t at node sn(p) - 1 from node
8n(p) - 2 as being

Pilsn(p) - 2. 8n(p) -1l Yt.n(p) - 2,
where yt n(p) - 2 is the reiative throughput of traffic type t at node Sn(p) - 2-

This reasoning can be extended inductively backward to the first node of the path,
with a similarly defined factor applying at each node. Thus a measure of the

relative amount of traffic flowing from node s1 to node 8n(p) is given by the
product

np) - 1
Wy (P) =TT P si.sis 1) (Equation 3 - 5)
i=
Thus if the expected deiay for type t traffic is to be computed for travel along any
of the mulitiple paths, say P4y , . . ., P it will take the ftorm
n n

E[Dy(P1 or ... or Pyl = (3= Wi(POED«P])/ (ZZ Wi(Pi)) (Equation 3 - 6).
im 1 fem 1

This effectively completes the discussion of model development which was the
main subject of this section. All ot the technical results presented above are
specific to this application, and are generally not part of the generic results
derived in product-formm network-of-queues expositions. Appendix B provides a

full accounting of the generic mathematical treatment of the open product-form
network which is sufficient tor our purposes.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
23

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

4.0 INSTRUCTION MANUAL FOR THE MMDESIGN PROGRAM

The main goal of this years study effort was to develop the mathematics
needed to create a credible model of the multimedia network within the product-
form network-of-queues framework, and to then implement the concepts in a
computer program. The MMDESIGN program developed for this purpose is
effectively still a prototype, and will undergo considerable generalization and
improvement in the next year. Therefore, the content of this section shouid not
be taken as a permanent record of the capabilities, form, or user-interface
associated with this program. Many of the features described in this section are
still in development, and others are not yet fully debugged.

The specific objective of this program is to provide an analytical tool enabling
communications network designers to assess the tradeoffs involved in assigning
various traffic types to various media supporting a multimedia network structure.
The tradeoffs relate to the greater or lesser ability of a given medium to service
any particular traffic type within the constraints of traffic degradation and delay.
Where some media are supernior to others relative to these properties, some
portion of the traffic may need be relagated to the poorer media. This program
will aid analysts in determining the steady-state effects of tratfic multiplexing on
the media.

MMDESIGN in its present form does not perform any automated optimization
of routing. The user can enter the information defining the network, and can then
derive and examine the steady-state pertformance of the system. The primary
metrics provided are the expected response times (i.e., queueing delay plus
service time) for each node and tratfic type, the expected delay times for any
tratfic type traveling any specific path or collection of paths all of which have the
same origin and destination.

This program is quite data imens:wve. since it will require enough information to
completely specity all routing in the network, all tratfic types (each of which has its
own routing structure), and all medca Thue this program is not “user friendiy”, in
the sense that one can get practical results from its use in short order. To fully
specity a large network to the level required for this program could require
substantial tedious data input. However once that data has been supplied, it is
possible to examine many trathc mutiplexing scenanos with much less
expenditure of time and much greater confidence in the resuits than would be
available through simulation.

The following subsection wall be devoted to explaining the meaning of each
data input required to fully deftne & muhtimedia communications network to the
program,

4.1 Explanation of Program Inputs
The modeling techniques descnbed n Section 3 permit the network analysis

done by MMDESIGN to be done incwwiOually by trattic type. That is because the
channel multiplexing technique used to create a composite channel makes the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
24

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

traffic types independent of eachother, except that each traffic type has a limited
amount of the total media bandwidth available to it, associated with which is a
composite traffic service rate and tratfic error rate.

Because this is the case, the data entry process for MMDESIGN is organized
primarily around traffic types and the specific information associated with a single
traffic type. Furthermore, the information input scheme is such that analysis can
proceed for a single traffic type once all of the data associated with that traffic
type has been entered.

Since the amount of data to be input for an entire network can be very
extensive, the program organization only keeps data for a single traffic type in
computer memory at any time. This is of great advantage in the present IBM PC
implementation, since most IBM PC's or equivalents have less than 1 megabyte of
memory capacity.

Data input for any network design analysis is automatically stored to a file as it
is entered. This file can then be invoked in a later session and used as is for
further analysis, or edited it it is desired to try a different, but similar network
configuration. There is one limitation built into the data storage retrieval process
which was unavoidable, given the constraint on available memory, and that is
that, although almost any of the originally entered data associated with a network
can be edited, the overall "size” of the network must remain the same. In this
case, the size of the network is a function of the number of nodes, the number of
traffic types, and the number of media types input in the network definition. Once
these three values are selected, a new network obtained by editing the present
network cannot change any of them. (A larger network can be defined only by
going through the full network creation process again.) Thus, if one defines a
network, and anticipates that the network later may invoive more traffic types,
media, or nodes, one should select the maximum values expected for those
numbers at the initial creation of the network. Doing so does not measurably add
to the workload associated with data entry until such time as the network definition
is actually expanded.

The inputs to the program during network creation will now be discussed, in
the order in which they are input. First are the glgobal parameters, so called
because they are not associated with any single tratfic type; these are

a. the total number of communications nodes in the network,

b. the total number of media types in the network,

c. the total bandwidth (in Kbits/second) for each medium type,

d. the total number of traffic types in the network.
Following the entriee above, the block of data entries discussed below are all
associated with a specitic traffic type. The user enters these parameters in
consecutive blocks of entries, with all entries in a given block being associated
with a single traffic type. After the data for any traffic type has been entered, the

user may exit the network creation process and proceed to the analysis portion ot
the program for the traffic types already defined. The tratfic type data entry

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
25

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

comprises
a. the network-wide traffic arrival rate for the traffic type,
b. the mean message length for the traffic type,

c. the length of the acknowledgement for the traffic type (enter O if no
acknowledgement is used)

d. a coliection of missed message rates for this traffic type, one for each
medium on which it will be transmitted,

e. a collection of local arrival rates, one for each communications node in the
system (these rates correspond to the probability distribution by which
the global arrivals for a traffic type are subdivided, as explained in
Section 2.2),

f. station traffic multiplexing vectors by which the composite channel for the
traffic type are defined (see Section 3.2), one multiplex vector being
required for each node in the network,

g. the network routing transition probability matrix P[i, j] for the traffic type.
i.,e., the defined routing in the system may be varied by traffic type.

The quantity of data required to define a large network is extensive, especially
since the items e. through g. must be entered for each traffic type, and some of
those items (especially the station multiplex vectors and topology routing matrix)
may require substantial numbers of individual entries. However, there is available
in the program a copy feature that allows the most voluminous data structures, if
identical for different input cases, to be copied from previously entered data. E.g.,
it, for a given traffic type, all station traffic multiplexing vectors are to be identical,
then the copy function allows the analyst to evade a very substantial amount of
data entry.

A final data entry process, which is decoupled tfrom network creation/editing, is
associated with the determination of the paths over which the model is to compute
traffic delay. The inputs in this case specify to the program which network paths
are of interest to the user in computing path delay through the network. The user
may in effect enter sets of paths, and the final performance output for the
program will compute the expected delay for each traffic type along those paths,
with the delays computed being averages taken over each path set. The path
data need not be entered at the time that the network data described above is
entered. The user can enter network definition data, and compute all nodal
metrice of interest, if so desired, before proceeding to evaluation of path delays.
All path data is entered under a separate menu function "Paths”, at a time of the
users choosing. The path data entered is

h. number of sets of paths to be defined,

i. a path description, entered as a sequence of nodes (interpreted as from
origin to destination), and the path set in which it is to be included.

AR AICS/HARRIS CONTRACT DAKF11-88-C-0052
26

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

As is the case for all network definition data, the path data is stored to disk,
and can be recalled and edited at will in association with the network data defining
the network.

A final point concerning the total aggregate of input data is that it is possible to
enter data in so complex a model as this which is mathematically inconsistent.
There are four possible forms of inconsistency , namely,

1. the possibility that the row sums of any routing transition probability matrix
do not equal 1 (the row sums are probability densities, and so must add
to 1), associated with data entered under item g. above,

2. the possibility that the local arrival rates for a traffic type do not sum to
one, associated with data entered under item e. above,

3. the possibility that more than all channel bandwidth for a given media type
might be allocated to the various traffic types, associated with data entry
under item {. above,.

4. the possibility that a defined path, as entered by the user in connection with
item i. above , is not in fact supported by the media routing
transition probability matrices for any of the traffic types.

There are “Verity™ utilities provided in the program to assist the user in
checking that each of the above data types is consistent. A verification function is
automatically invoked at the end of a network creation session, to inform the user
of any difficuities detected relative to items 1. to 3. above. That utility can also be
invoked by the user after any network editing, in order to insure that previously
consistent data has not been made inconsistent by the editing process.

Of course, there are other possibilities for what amounts to inconsistent data
entry, such as entering parameters which are obviously out of range, or which
create hopelessly large traffic loads in the network. There is no range checking
for such data errors in the program.

4.2 Program Organization and Menus

This subsection will describe the user interface to the MMDESIGN program,
and will explain each program function in detail. R is important to reiterate at this
point that MMDESIGN is a prototype program, and will evolve substantially over
the next year of this study. Therefore, the material in this manual concerning
program interface and function is interim information.

4.2.1 User interface Format

The MMDESIGN program is entirely menu-oriented. It consist: of a main
menu which requires single keystroke responses trom the user, and several
submenus associated with main menu commands. The general format of all
menu lines is the same: each command on a menu line is written in the form

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
27

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

X xxxxxx -,

and the user must enter the first letter of the command (in either upper or lower
case) , followed by the "ENTER™ key. This results either in the presentation of a
submenu or specific prompts for data entry associated with the command. In
general, all possible user actions are met with clear prompts for the appropriate
action.

The other major aspect of MMDESIGN screen format is the division of the
screen into two portions. The top portion comprises about one-fifth of the total
screen, and provides a status/navigation window to the user. This window
displays at any time the current menu level at which the user is active (shown
hierarchically from the top menu), as well as the name of the network file and the
traffic type currently under investigation. I no network file has been opened, then
the name displayed is "Undefined".

The lower portion of the screen is the user/program interaction screen, and
effectively functions as an ordinary terminal interface, with data scrolling off the
top when the screen becomes full, and new data is entered at the bottom.

The program contains, together with the verify functions, a number of other
warnings indicating fatal problems, such as an inability to open a requested file.
Warnings of this type are presented in blinking red text, and are preceded by a
short tone from the computer speaker.

4 2.2 interpretation of the Menus

In this section, each of the MMDESIGN commands available through the
program menus will be explained. Since the menu structure is hierarchical,
menus at lower levels may be referred to with simultaneous reference to their
ancestors in the hierarchy, where that improves the clarity of the presentation.
Such references will take the form *PARENT/CHILD/GRANDCHILDY/...”. in this
notation, the main program menu will be referred to as "MAIN". While reading to
the material below, the reader may find it helpful to refer to the template in
Appendix A which provides a view of the full hierarchical menu structure of the
MMDESIGN program.

The MAIN menu is presented as the following line:
" N(ew, C(reate, E(dit, P(rint, R(ecall, T(hruputs, P(aths, M(etrics, Q(uit:

To tacilitate document organization, the discussion will be broken into
separate subsections below. K should be noted that a thorough reading of the
following subsections is mandatory before attempting use of MMDESIGN,
because many essential details of program operation are embedded in the
following discussion, and may effect the understanding of commands other than
those under which they are introduced.

4.2.2.1 The "N(ew" Command

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
28

MULTIMEDIA NETWORK DESIGN STUDY — FIRST YEAR FINAL REPORT

In order to perform any actions on a network, the user must supply a network
name to the system. This name is the same as the filename in which the network
data is to be stored, but the user does not supply the extension to the filename. In
effect, the network will create three files files with the same root name, but
different extensions. These three files will be

1. "NetworkName.top™, which contains the topology and network definition
data associated with data entry items a. - g. discussed in Section 4.1.

2. "NetworkName.thp~, which contains the relative throughput data for all
traffic types defined by the user,

3. "NetworkName_pth”, which contains the path sets associated with data
entry items h. and i. discussed in Section 4.1.

These three files will be stored in whatever the current DOS directory was at the
time of program initiation. When there is a need for the program to open these
files, the program looks only in the current directory , i.e., the directory that was
active at program initiation, or any other directories made available by the DOS
"PATH" command.

In general, the program will prompt the user for a network file name it one has
not been defined and the current requested action requires one. Once that name
has been supplied to the program, it remains the current network file for all further
actions unless the “N(ew” command is invoked. The "N(ew” command is the
means by which the user can change from one network file to an unrelated one,
if that is desired. Note that invoking the new command does not actually store or
retrieve any data to memory, but only establishes that all further actions will refer
to a different network file. The means by which data storage is accomplished in
the program prevents any loss of data in any event: all relevant data for a network
analysis is always stored as soon as it is created, so that errors on the part of the
user concerning possible loss of data are minimized.

4.22.2 The “C(reate” Command

The "C(reate” command is used when a new network, not previously defined
and stored to disk, is 10 be created. If no network name has yet been defined via
the "N(ew” command, the user will be prompted to supply a network name. If a
previous file of the same name already exists in the active directory on disk, then
the user will be warned, and given the option to discontinue. (Continuing at this
point will erase the previous file of the same name already on disk.) Once the
filename has been selected, the "C(reate” function steps the user through all data
entry associated withthe full definition of a network structure, with data entry
being required for items a. - g. in Section 4.1, and the order of entry being in the
order indicated.

The data needed to define a large network can be quite voluminous, so
MMDESIGN provides certain shortcuts to the user to eliminate the entry of
redundant or assumed values. This applies specifically to the following types of
data.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
20

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

1. Entry of error rates for all media and a specific traffic type can be
eliminated if all such entries are identical with those for a previously
defined traffic type. MMDESIGN asks if the current entries are like those
for a previous traffic type, and if so, allows the user to input the traffic type
index only. Then the previous error rate data is copied to the current
traffic type.

2. Local arrival rates for the traffic type, i.e., the specific probabilities that a
newly originated message will be associated with a given node, can also
be copied from one traffic type to a later traffic type, by the mechanism
described above.

3. The multiplex vectors, by which the composite channel for a given traffic
type is defined (data item f. of Section 4.1) can be copied from one traffic
type to another by the mechanism described above.

4. The topology of the network ailso is unique to each traffic type (i.e., each
traffic type may adhere to a separate matrix of routing transition
probabilities), but the routing matrix of a previous traffic type can be
copied to the current type by the mechanism described above.

A final data entry economy is associated with the entry of specific routing
probabilities for the routing transition probability matrix associated with a traffic
type: namely, all entries of the probability matrix are initialized to zero, so the
user need only enter the data associated with actual links in the network. For
those data entries required, data is entered on a single line, as the origin node,
destination node, and probability, in that order, separated by spaces and
terminated by a carriage return.

The "C(reate” command steps the user through the input of all required data,
looping through the tratfic type specihic data until all traffic types have been
defined. When the data entry prooses I8 complete, it automatically verifies the
consistency of the data, and provides & acreen warning if any inconsistencies are
found. This screen warning does not punpoint the nature of the data inconsisten-
cy, however: the user should invohe the “MAIN/Edit/Verity™ command in order to
get e detailed account of where the wmoonsistencies were found.

A final impontant point is thet the weer need take No action to insure that a
created network definition is stored o ek The storage process is carried out

simulitaneously with data entry, eng » automatically compieted and the file closed
at the termination of network coreeuwon

4.2.2.3 The "E(dit” Command
invoking “E(dit” at the MAIN me~wu leve! confronts the user with a new menu,
“E(dn. Vienty Q(uit:: "
The "MAIN/EJIVE(dit" command @ uweed to modity a previous network definition

stored in a network file. The fie 10 be edned will be the current one, as shown in
the Navigation/Status window, or, # none has been identified, the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
30

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

"MAIN/EdIiVE(dit~ command will prompt for a file name. All of the network
parameters in a file may be modified, with the exception of the number of network
nodes, the number of traffic types, and the number of media types. (A later
version of MMDESIGN will permit modification of these parameters aiso.)

invoking the "MAIN/EdiVEdit” menu results in yet another menu of the form

" Edit functions are as follows:

Exit the edit function,

modify media bandwidths,

modify traffic type global arrival rates,
modify traffic type length,

modify traffic type acknowledgement length,
modify traffic type/medium type error rates,
modify traffic type station arrival rates,
modify traffic type medium multiplex vector,
modify traffic type station connectivity.

ONOOLWON=2O

When the user invokes any of these choices except "0", the program prompts tfor
information relating to the specific data type to be modified. Some of these
choices, on the assumption that the user will wish to modify a multiplicity of them
at one time, result in a menu of their own, which allows sequential modification of
the data type in question, or a "Q(uit” option to return to the "MAIN/EdiVEdit®
menu.

A final point concerning editing is that the user does not in fact edit the original
data file during the actual edit session. Instead, a temporary file of the same root
name, but with extension ".tmp"~ is created, and all editing changes are made to
that file. When the user invokes the “MAIN/EdiVEdit/O®™ command to exit an
editing session , the program provides the option of storing the edited data under
the original file name, under a new file name, or abandoning the changes with no
permanent file being created. If a new file name is chosen, it does not automati-
cally become the active network of the program. [t will be necessary for the user
to use the "MAIN/New” command to select the new file for analysis.

invoking the "MAIN/Edit/Verity" command provides the user with the
opportunity to check the current network data file (i.e.. the one displayed by the
program in the Navigation/Status wandow) for consistency. The verify command
provides specific outputs to screen and printer, if requested, indicating the nature
and locations of the inconsistences found. Data which contains inconsistencies
will not provide reliable network performance metrice, and in fact may cause
system crashes when computation based on it is attempted. The user must edit
inconsistent data, and reverity it to nsure that the results of analytical endeavors
with MMDESIGN are meaningtul

4.2.2.4 The "H(ardcopy™ Command

The "H(ardcopy™ command on the MAIN menu enables the user to get
hardcopy output of the network detnmion data, Invoking the "H(ardcopy”
command presents the user with another menu,

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
31

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

"Display G(lobal data, T(raffic type data, A(ll data, Q(uit: ".

The user can print out only that network data which is global (data items a. - d. in
Section 4.1), only data that is specific to one traffic type (items e. - g. in Section
4.1), or the entire contents of the active network definition file. The printout is
formatted so that the various data types contained in the file are easily
distinguishable. If no data file is currently active, the program will prompt for one.

4.2.2.5 The "R(ecall” Command

The "R(ecall” command permits the user to bring into computer memory the
global data from a network definition file, and the traffic type data in that file
associated with one specific traffic type index. (Because the product-form
analysis of even modest-sized networks requires a substantial body of data, the
data for only one traffic type at a time is ever in memory. All analysis needed for
that traffic type can be done from that data.) Invoking the "R(ecall” command
establishes the recalied network and traffic type as the currently active data set in
the program. The "R(ecall” command simultaneously brings any throughput data
already computed for the traffic type into memory, (see 4.2.2.6 and Equation 2 -
3). so that the user may pursue the analysis of the traffic type.

4226 The "T(hruput™ Command

The "T(hruput” command (mispelled 1o save space in the menu line), is used
10 compute the relative throughputs for the network and traffic type currently
active in the program. The relative throughputs for any traffic type are computed
from Equation 2 - 3, and, once obtained, are the basis for all performance metrics
available for analysis. Invoking the “T(hruputs” command begets the user another
menu,

"C(ompute, D(isplay, P(rint, Q(uit:"

These menu entries permit the obvious actions to be performed, where the
"P(rint” command may be used to print throughputs for one, or all, traffic types.

Since the throughput computation is the most intensive computation required
for open network analysis, the results of a successful throughput computation are
automatically stored to a file the name of which has the currently active network
name as root, and the extension “.thp". Thus if a user wishes to terminate an
analysigs session, to be resumed at a later time, it will not be necessary to
recompute these quantities, which computation may prove to be time-consuming
for large networks.

4.2.2.7 The "P(aths™ Command

The paths selected for analysis in the network can be chosen independently of
the original network creation, editing, and throughput calculation processes. In
the normal order of events, the analyst would define a network via the creation
process, edit it if necessary to delete inconsistencies, and then compute the

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
32

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

throughputs associated with that network definition for the traffic types of interest.
After those activities had been completed, the analyst could directly examine the
metrics associated with the individual nodes of the network (see Section 4.2.2.8
below for a description of the available metrics). However, in order to understand
the effect of the network structure on the end-to-end delay of tratfic, the analyst
must examine the delay times of multiple-node paths. If a particular end-to-
end scenario of interest involves only one path, then the end-to-end delay is
simply the sum of the nodal response time (i.e., queueing plus service delay) for
the path.

However, if the end-to-end scenario involves an origin and destination
connected by muitiple paths, then the analyst might desire the mean delay for ali
traffic of a given type between the origin and destination, traveling by whatever
path is available. This was discussed in detail in Section 3.5, where it was shown
that the computation of expected delay requires in such case a weighted sum of
path delays, for all paths regarded as routes between the origin and destination.
The "P(aths” command permits the analyst to define sets of paths from a specific
origin to a specific destination, such that any such set of paths will be taken as a
collection over which expected end-to-end delay is to be computed. These sets
can be created, edited, and verified using the "P(aths” command.

When the ana'yst: invokes the "P(aths™ cor——and,tkc menu line
"C(reate, A(dd, D(elete, V(erity, H(ardcopy Q(uit: "~

appears. The explanation of these options will be taken up in their order of
appearance.

First, the "MAIN/Paths/C(reate command permits the analyst to establish a
new set of paths between any origin and destination node, and to list the traffic
types of interest for that set of paths. The user is informed (based on how many
path sets have already been defined) of what integer index will be associated with
this path set, and then is prompted for the number of paths to be included in the
set. Following that, the user enters the individual paths, each as a sequence of
nodes separated by spaces, all nodes of a given path being entered sequentially

from origin to destination, separated by spaces, and terminated with the "ENTER"
key.

The user is then prompted for the traffic types of interest relative to this path
(i.e., the traffic types for which the expected aggregate end-to-end traffic delay is
to be computed), which are to be entered separated by spaces, and terminated
with the "ENTER™ key. At the end of the path creation process, the program
automatically chacks that the paths do indeed exist (i.e., all links of each path
have an associated nonzero routing transition probability), and informs the analyst
of any inconsistencies discovered.

The "MAIN/Paths/A(dd”™ and "MAIN/Paths/Delete” commands constitute the
editing process for the library of stored path sets. The "A(dd™ command aliows
the analyst to insert additional paths in existing path sets. The program rompts
for the path set to which a new path is to be added, and, following the response,
the analyst enters a path description in the same format as was described for the
path set creation process. The additional path is automatically verified as valid

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
33

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

(in the same manner as for path creation), and the user is warned of
inconsistency.

\
For the delete command, the analyst is prompted for a path set from which to
delete a path, and then is shown a screen listing of the paths in the set. The user
enters a path index for the path, as adduced from the screen listing of the paths.

Note that the path sets defined for a network are stored in a separate file, the
root name of which is the network name, and the extension for which is ".pth”. Ali
creation and modiffication activities involving the path sets automatically update
this file without user intervention.

The "MAIN/Paths/Verify ™ command can be called at any time by the analyst,
and will either verify a specific path set as containing consistent paths, or will
verify all existing path sets.

The "MAIN/Paths/Hardcopy”™ command permits the user to obtain a printer
output of the contents of either a specific path set, or all path sets.

The "MAIN/Paths/Quit” command returmns the user to the MAIN menu line.

4228 The “"M(etrics” Command

The “M(etrice” command allows the analyst to examine the various network
peformance maetrics which can be computed for the network. All of these metrics
require first that the relative throughputs associated with Equation 2 - 3 and
section 4.4.2.6 have been computed. Al metrics related only to nodal
performance can then be obtained directly: those relating to mean delay for
traffic traveling along paths, or collections of paths, cannot be computed until the
desired sets of paths have been defined via the "P(aths” command discussed in
Section 4.4.2.7.

Invoking the "M(etrice™ command presents the menu
"N(odes, P(aths, Q(ueue Length Density, H(ardcopy., Q(uit: ".

The “H(ardcopy” option does not prompt the user, but simply turns the printer on
so that a hardcopy record of all metrice requested is provided. This hardcopy
option remains activated until the "MAIN/Metrics/Quit" command is invoked.
Hardcopy requested is formatted so that it is clear from the printout exactly what
performance metrics have been supplied.

The "N(odes™ command presents the user with a menu line
"S(ingle Node, A(ll nodes, Q(uit: ~.

The user can exercise the "S(ingle Node™ option to request the available
performance metrics for a specific node, and may request the “A(ll Nodes”
option to get a listing of the nodal performance metrics for all nodes. The screen
listing of metrics scrolls, as does all ordinary screen output, so it is advisable 1o
have invoked the "MAIN/Metrics/Hardcopy”™ option prior to invoking the "All Nodes™

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
34

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

option. In either the "All Nodes™ or "Single Node™ case, the metricse supplied for
each node are

1. the throughput of the node for esch traffic type,

2. the total throughput of the node for all traffic types combined,
3. the utilization of each composite channel at the node,

4. the utilization ot the individual media at the node,

5. the nodal response time for each traffic type at the node.

These measures will be given more precise mathematical definitions in Appendix
B. Taken together, they provide a good diagnostic tool by which the analyst can
examine bottlenecks in the network, and determine their causes.

Invoking the "MAIN/Metrics/Paths™ command presents the user with another
menu,

"S(ingle Path Set, A(ll Path Sets, Q(uit: ~

The "S(ingle Path Set” option prompts the user to enter the identity of a single
path set (path sets are discussed in connection with Section 4.2.2.7), and then
the overall expected path delay for the aggregate of all paths in the set is
computed and output to the screen and/or printer,

The “A(ll Path Sets” option outputs the same metrics as the ~S(ingle Path
Set” option, but does so for every path set which is in the paths file tor the
network. The delays are provided for each- traffic type which was associated with
the path set of interest at the time the path set was defined.

The numbers supplied in this cese are just the mean delay time for transit of
the traffic type(s) from the origin to the destination node. In a later version of the
program, the computation of vanance tor that delay will also be supplied.

The "Q(ueue Length Density” command provides a more resolved look at the
potential queueing bottlenecks in the system. When this command is invoked,
the analyst is prompted for a node number and traffic type, and the program then
computes and outputs the probatuinty density of the queue length for that traffic
type at that node. In theory. thia denany has infinitely many non-zero terms, but
in practice, the terms are truncated when the queue length probabilities become

less than 10 '6.

Invoking the "MAIN/Metrica’Quit® ocommand retums the analyst to the MAIN
program menu.

4.2.2.89 The "Quit~ Command

Invoking the "Q(uit” command at the MAIN menu level exits the main program.
Since all creation and editing procesaes iIn MMDESIGN are stored to files as they
occur, the user may exit the program wrthout first being concemed about data
changes which may have been made dunng the program.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
35

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

4.3 Summary and Further Directions

This completes the discussion of the program menus, and should provide the
analyst with enough background to successfully exploit the power of MMDESIGN
to examine the overall traffic flow in a network, and to seek better allocation of
assets. The MMDESIGN program must be developed and used in prototype
fashion over some range of test cases in order to fully understand its potential as
an adjunct to network design by simulation. The second year of this study will be
focused on studying such test cases with MMDESIGN, and, using the insight thus
gained, creating automated capabilities within MMDESIGN to seek allocation of
assets so as to achieve optimum traffic timeliness within the bandwidth constraints
of the system.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
36

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

5.0 REFERENCES

[1]). Aigner, Martin, Combinatorial Search, John Wiley & Sons,
New York, NY, 1988

[2]). Nemhauser, George L., and Wolsey, Laurence A., Integer and
Combinatorial Optimization, John Wiley & Sons, New York, NY, 1888

[3]). Jackson, R. R. P., "Queuseing Systems with Phase Type Service", J. R.
Statistical Society, B18, 129-132

[4]. Baskett, F., Chandy, K., Muntz, R., Palacios, F., "Open, Closed, and Mixed
Networks of Queues with Different Classes of Customers™, J. ACM, Vol. 22,
No. 2, Apr '75, pp. 248 - 260

[8). Lemoine, A. J., "Networks of Queues, a 3urvey of Equilibrium Analysis”,
Management Science, Vol. 24, No. 4, Dec. '77, pp. 464 - 481

o
[6). Lavenberg, S.S. (Editor), Computer Performance Modeling
Handbook, Academic Press, San Diego, CA, 1983

[7]). Akyildiz, 1. F., "Exact Product-Form Solution for Queueing Networks with
Blocking”, IEEE Trans. on Computers, Vol. C-36, No. 1, Jan '87,
pp 122-125

[8). Conway, E. A, Georganas, N. D., "RECAL - A New, Efficient Aigorithm for
the Exact Analysis of Multiple Closed-Chain Queueing Networks™, J. ACM,
Voli. 33, No. 4, Oct. '86, pp. 768 - 791

[9]. DeSilva, E. D., Lavenberg, S. S., "Calculating Joint Queue
-Length Distributions in Product-Form Queueing Networks”,
J. ACM, Vol. 36, No. 1, Jan '89, pp. 194 - 207

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
37

2500-0-88- 1 1 4X%VQ SIYHVH/SOINYIV VSN

M) ‘s19G Yied Y ‘196 yied 3[dun)g JN)0) ‘SIPON Y ‘3poN 9j3ut)g i) ‘eie@)V ‘vieq adAg oyge)) ‘eleq feqopo Aeidsig

!
|
|
1)) ‘Adoopre)y ‘Ausuaq Suay anan)y) ‘syie)d ‘sepoN |“

Kianoauuo) uonerg odA | aigpes g, AJIpoy ‘8
1003/ xajdanjy umipapy 2dA 1 ouges] AJipoj °L
sajey [eawly uonei§ adA 1 oues 1 AJipop °9
sapey Joug adA), wnipojy/adA | oyyesf Ajipop °g
pBua juswadpapmoudy adA § auyerf AJipoy p
3uay adA g ouge1 AJipojy ¢

sajey [eAwy [eqoD) adA 1 duge1] Ayipo '
syIpimpueg eI KJIpojy °|

uonung 1pg 3 13 0

injo ‘wu)d ‘feidsi)q ‘aindwo))

!
!
!
!
!
.

1)) ‘Adoopr)y ‘AJus)A ‘MRR)T PRIV ‘Areal))

e d

o wmm o

|
1)) ‘KJuaA ‘wp)a

e il e ——"

L.

I i
Ny ‘SuiB ‘suield ‘sindruy) ‘yeos)y ‘Adoopre)y ‘up)3 ‘ejeas)y ‘Ma)N
(INGN NIVIN NOISTAAIN
TANLINALS ANTN NOISTAWIN TVOIHOUVYHIH FHL 40 MTIA

V XIANdddV

1HOd3Y TVNIJ HV3A 1SHI4 = AQNLS NOIS3A XHOMLIN VIA3IWILTINW

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

APPENDIX B

THEORETICAL DESCRIPTION OF CLOSED-FORM MODELING FOR OPEN
NETWORKS OF QUEUES

The general description of the context and limitations of closed-form network-
of-queues models were discussed in Section 2. The techniques by which such
modeling can be fruitfully applied to the design of multimedia communications
networkse were discussed in Section 3. In that section, an open network model
was adopted for the study of the multimedia traffic type issues of communications.
It is fortunate that the open network model is the germane model in this case,
since the computational difficulties associated with that model are less severe
than for closed networks. (Recall that an open network allows arnivals to and
departures from the system, while a closed network does not: thus the customer
count for a closed network does not change.)

This appendix will provide careful mathematical development of the essential
expressions for the primary performance measures of open network models. The
development presented in this appendix is the essential underlying mathematics -
on which the MMDESIGN program is based.

To begin this exposition, recall that the assumption underlying the success of
the closed-form technique is that the network have a product-form. This
assumption actually means that

1. the state of each node is expressible solely in terms of its current customer
population, i.e., in terms of the numbers of customers of each type
currently in queue and in service,

2. the state of the entire network is expressible exactly in terms of the
individual states of the nodes.

The latter assumption is expressible in terms of a product of independent
probabilities,

Pr{(S1, S2, ..., SN)} = Pr{S41}Pr{S3}...Pr{SN)

where
Sj is a vector representing the customer population at node i,

Pr{(84, S2, ..., SN)} is the probability of the network having the aggregate
state represented by the state vectors of the nodes, and

Pr{Sj} is the probability that node i has the state represented by S;.

These assumptions hold true provided that the routing in the network is
probabilistic rather than deterministic, i.e., that each customer leaving a node has
a probability of thereafter going to any other connectad node. The routing

probabilities are grouped in a routing transition probability matrix. which may take

the form

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
39

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

P[(i.8). (j.t)] = probability of a customer of class s at node i transits to a
customer of class t at node j .

However, the pairwise notation used above is inconvenient, so we opt instead to
use a notation where each (node, customer class) pair takes on a single index
notation, which we will call the customer type. In effect, each customer class has
now been subdivided into many customer types. (There are then many more
customer types than classes, but the matrix dimensions remain the same.)

Given this change of notation, the matric expression for routing transition
probabilities becomes

Plc, d] = probability that a type ¢ customer transits to a type d customer.

This matrix would be a square matrix, with dimension equal to the total number of
customer types determined in this way. However, for open networks, we include
the possibility that a message leaving processing at a node may be absorbed at
that node. This effectively adds a "zero-th" customer type, which is included as a
zero-th column of the matrix, P[c,0].

Together with this matrix, the arrival rates at the nodes determine the
ossontial loading of the network, and from this, all measures of performance are
derived. For reasons of mathematical convenience, the arrival process is
expressed in terms of a giobal arrival rate per customer class, which is the total
arrival rate for all customers of that class to all nodes, and a probability
distnibution which subdivides that arrival rate between all relevant nodes. The
global arrival rate is taken to be Poisson (i.e., exponentially distributed
interarrival times). Each customer class global arrival rate can in fact be
dependent on the number of customers of that class already in the system: thus
the arrival rate for customer class i could be expressed as a discrete function

Ai€0), Ai(1), Ai(2),
in the application of this theory to multimedia communications, there has been no
need to consider variable arrival rates, so we will denote the arrival rate for

customer class i simply by ;.

Now the global arrivals into customer class i are partitioned by a discrete
probability density, say p;j= (pPit1. Pi2. --.. PiN). where

Pij = the probability that an arrived class i customer arrives at node j .
The actual consequences of this two-step description of arrival is actually

equivalent to postulating Poisson arrivals for each customer class at each node,
where the overall arrival rate for customer class i at node j becomes

Ajj = PijAi. (Equation B - 1)

Converting over to customer types., where d is a customer type which is ot
customer class i, we will use the notation

P[0, d] = probability that a customer class global arrival of class i
goes to customer type d.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
40

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

In this notation, we are prepared to state what is the fundamental relationship
from which all of the remaining performance measures flow, namely,

vd = P[0.d] + 2 ycPle.d] (Equation B - 2),
ceC

which expresses the relationship of the relative throughputs for the network. In
this equation,

Yd = the relative throughput of customer type d, and
C = the set of all customer types (including the "0" type).

The equations represented by Equation B - 2 are a set of linear equations which,
tfor open networks (i.e., at least one P[0, d] not equal to 0), are uniquely solvable
for the quantities yq, d € C. In many instances, the equations in fact decompose
into disjoint subsets of equations, because the potential classes and nodes that
some subsets of customers might visit are restricted by routing limitations to less
than the full sets of nodes and classes. Such subsets are called closed royting
chains.

The quantities yq are called throughputs because Equations B - 2 are
effectively flow equations, and the yg correspond to the total traffic intensity
entering a node from all other sources. These throughputs are called “relative”
because the equations do not involve in any way the gicbhal arrival rates to the
system: however, the only ettect ot the global arrival rates is to scale the absolute
traffic throughput values to some tactor times the relative throughputs. There
may be several of these customer “type~ throughputs associated with a node, of
course.

Once Equations B - 2 have been solved for the yg, several derived
performance measures for the nodes are availabie, as described below. For
node j and customer type c, let

Cj = the set of all customer types passing through node j, and

E[Sc] = the expected service demand of a customer of type c.

Then

Y@ = 2 Yc (Equation B - 3),
ce¢ C,
represents the total relative throughput of node j.

E(Sjl = [z ve E[Sc)]/V(j) (Equation B - 4),
cc C'
represents the expected service cemand per customer on node j independent ot
customer type.
be = yc E[Sc) (Equation B - 5),

represents the total customer type ¢ service demand on node j.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
41

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

b() = 2 bc (Equation B - 6),
CE Cl

represents the total expected service demand for node |j.

Again, all of these numbers are relative quantities: they provide comparisons
between nodes, but until they are multiplied by the absolute arrival rates, they do
not provide absolute values for the indicated quantities. If A; represents the
absolute arrival rate for type c customers (which are of class i), then we can
express absolute arrival rate for type ¢ customers as

Ne = 2Ajyc (Equation B - 7),
and we can express the type c absolute service demand as
Pc = Ajbg, (Equation B - 8)

and the absolute service demand on node j is

p.(j) = 2Ajby) (Equation B - 9).

The above expressions do not reflect the fact that the service rates at the
nodes can also be taken to be dependent on the number of customers already in
queue at those nodes. However, we have no need of queue-dependent service
rates in the MMDESIGN program, so we shall not consider the extra mathematics
associated with that case.

We are now in a position to express the probability density for the queue

length at a node. If Hj is the service rate at node j, and nj is the number of
customers currently at node j, then

Prob{nj=q} = [p'(j) / Hj]q.Prob{nj = 0} (Equation B - 10).

For the FIFO queue, which is the only queue of interest in the MMDESIGN
program, the latter factor is given by

Prob{ nj = 0} = 1- (xib(j) ! Hj) (Equation B - 11).

The latter term in the last equation is usually called the iraffic intensity at a node,
and we will denote it as

Pj = Ab() 7 1 (Equation B - 12).

From the above results for FIFO queues, it is possible to express the expected
queue length in closed form, i.e.,

E[nj] = pj/(1 - pj) (Equation B - 13).

The above results essentially provide the mathematical elements underlying the
derivation of performance metrics for the MMDESIGN program.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
42

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

APPENDIX C
MMDESIGN SOURCE CODE

The MMDesign source code is written in Borland's Turbo Pascal. The source code consists of a main
program and two supporting units, as foliows.

MMDesign.PAS — the source code for the main program,

_Qata_lO.PAS -- the source code which supplies all the file handling and data manipulation
actwites for the main program

_NetComp.PAs — the source code which supplies the computational fucntions needed by the
main program.

Note that MMDesign is an evolving program, and thus the source code supplied in this appendix will
undoubtably be considerably expanded and altered following publication of this document.

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
43

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

PROGRAM MMDesign; (*John R. Doner 8 August 1989°)

(*“This program is the main implementation of the networks of queues theory
as applied to the Multimedia Network Design Study. Note that this code
is in an evolutionary state, and as such includes partially implemented
and unimplemented features.*)

USES Data_lO, NetComp, CRT,;

(rooees Steeeretentetsetttstettacenttaseratecttarente e
DICTIONARY OF SIGNIFICANT PROGRAM VARIABLES

BadFile - controls exit from a procedure i data file not available
command -- user input to any menu prompt

|OWindow -- denotes the main window on the screen for user input/output
message -- used o pass string to CenterText procedure

NetDefined -- specifies whether a network is curmrently in memory
NetworkName -- name of currently active network

NoGo -- general purpose flag, used variously in program

Print -- controls hardcopy output from the Data_IO.Verify procedure
quit -- controls exit from the main menu program loop

Trafficindex -- denotes traffic type currently of interest

ssevesasenceseostarenatsncene serssssssacss)

VAR NetworkName, message : STRING;
Trafficlndex, i . INTEGER;
quit, BadFile, Print, NoGo, NetDefined : BOOLEAN;
command : CHAR;
IOWindow : TEXT;

(*The following procedure provides the top-ol-screen display on the screen,
indicating the current status of the program.®)

PROCEDURE NewScreen(titie: STRING);

VAR spaces: INTEGER;
Xtop, YTop, XBottom, YBottom, BackColor, ForeColor, StatusColor: BYTE;
Stat: TEXT;

BEGIN
(*Open the status window and write display to & °)

XTop = BYTE(1);

YTop = BYTE(1);

XBottom = BYTE(80);

YBottom = BYTE(7);

BackColor := BYTE(13);

ForeColor := BYTE(14);

StatusColor = BYTE(15);
TextBackground(BackColor);
TextColor(ForeColor);

Window(Xtop, YTop, XBottom, YBottom);
AssignCRT(Stat);

REWRITE(StaY);

CirScr;

Write(Stat,'A ++++++++++++4+++ AIRMICS MULTIMEDIA NETWORK DESIGN PROGRAM),
WriteLn(Stat, + +++++++++4+4++4++ A’);

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
44

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

WriteLn(Stat, 'I',’ .77, T');
spaces := (40 - Length(NetworkName)) DIV 2;
Write(Stat, 'R’,' ":spaces, 'Current Data File: °);
TextColor(StatusColor);
Write(Stat, NetworkName);
TextColor(ForeColor);
Write(Stat, ' Traffic type:’);
TextColor(StatusColor);
Write(Stat, Trafficindex:3);
TextColor(ForeColor);
IF (2*spaces + 39 + Length(NetworkName)) < 79 THEN spaces := spaces + 1;
WriteLn(Stat, * ":spaces, 'R’);
WiriteLn(Stat, 'M', ' *:77, 'M");
spaces = (63 - Length(title)) DIV 2;
Write(Stat, 'I',’ ":spaces,™** Menu: °);
TextColor(StatusColor);
Write(Stat, title);
TextColor{ForeColor);
IF (2*spaces + 16 + Length(title)) < 79 THEN spaces := spaces + 1;
WriteLn(Stat,’ ***", ’ ":spaces, 'I');
WriteLn(Stat, 'C", * ".77, 'C’);
WIte(S1al, 'S 4t ddd bt bttt bt b bt e)
Write(Stat, "+++++4+4+++t+4+4++4++ S);
CLOSE(Stat);
END(*NewScreen");

(*The following procedure opens the main 1/0 window for data entry.*)

PROCEDURE MainWindow;
\B”E\gler op. YTop, XBottom, YBottom, BackColor, ForeColor: BYTE;
XTop = BYTE(1);
YTop = BYTE(S);
XBottom = BYTE(80);
YBottom = BYTE(25);
BackColor := BYTE(7);
ForeColor = BYTE(1);
TextBackGround(BackColor);
TextColor(ForeColor);
Window(XTop,YTop, XBottom, YBottom);
AssignCRT(IOWindow);
REWRITE(IOWindow);
CirScr;
WriteLn(IOWindow)
END(*"MainWindow");

BEGIN("MAIN PROGRAM")
(“Initialization ot program status parameters®)

NetworkName = ‘Undefined’;
Trafficindex = 0;

NetDefined = FALSE;

quit .= FALSE;

REPEAT
NewScreen('MAIN’);
MainWindow;

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
45

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

Write(IOWindow, ' N(ew, C(reate, E(dit, H(ardcopy, R(ecall, T(hruputs,’);
, Write(IOWindow,' P(aths, M(etrics, Q{uit: °);
RESET(IOWindow);
ReadLn{lIOWindow, command);
CASE command OF
N','n'";
BEGIN
NewScreen('MAIN/New’);
MainWindow;
Write(' Enter new network name: ‘);
ReadLn(NetworkName);
NetDefined := TRUE
END(*CASE 'N™);
'C''c’:
BEGIN
NoGo = FALSE;
NewScreen({'MAIN/Create Network');
MainWindow;
Write(' Enter the filename in which network data is to be stored: °);
ReadlLn(NetworkName);
NewScreen('MAIN/Create Network’);
MainWindow;
NetDefined := TRUE;
CreateNetwork(NetworkName);
Trafficindex := NumberTrafficTypes
END("CASE Create*);
'E'e’”:
BEGIN
REPEAT
NewScreen('MAIN/Edit');
MainWindow;
IF NOT NetDefined THEN
BEGIN
Write(' Enter name of file containing network data: °);
ReadLn(NetworkName);
NetDefined := TRUE;
NewScreen("MAIN/Edit’);
MainWindow
END;
Write(" E(dit, V(erify, Q{uit: °);
ReadLn(command);
CASE command OF
‘E''e":
BEGIN
NewScreen('MAIN/Edit Network Data’);
MainWindow;
EditNetwork(NetworkName);
END("CASE 'E™);
Vv
BEGIN
NewScreen{'MAIN/Edit/Verity Network Data’);
MainWindow;
Wiriteln;
WriteLn(’ **** Network Data Verification ****’);
WriteLn;
Write(’ Is hardcopy output desired? (y/n): °);
ReadLn{command);
WriteLn;
IF command = 'y’ THEN Print := TRUE ELSE Print .= FALSE;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
46

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

IF NOT Verify(NetworkName, Print) THEN
BEGIN
WiriteLn;
BEEP;
TextAttr := BlinkOn OR TextAttr;
WriteLn(’ **** WARNING: data must be edited before use. ****’);
TextAttr = BlinkOtf AND TextAttr;
WriteLn
END
ELSE Write(' Network data passes all consistency tests.’);
Write(' Press any key to continue.’);
ReadLn
END(*CASE ‘V™);
'Q’, 'q": command = 'q’
END(*MAIN/Edit CASES")
UNTIL command = 'q’
END(*CASE Edit*);
'H''h’:
BEGIN
NewScreen{'MAIN/Hardcopy’);
MainWindow;
IF NOT NetDefined THEN
BEGIN
Wirite(’ Enter name of network data file: °);
ReadLn(NetworkName);
NetDefined := TRUE
END;
WHILE command <> 'q" DO
BEGIN
NewScreen('MAIN/Hardcopy');
MainWindow;
BadFile := FALSE;
WiriteLn;
Write(" Display G(lobal data, T(raffic type data, A(ll data, Q{uit: *);
ReadLn(command);
CASE command OF
'G''g"
BEGIN
IF NOT DisplayNetwork(0, NetworkName) THEN BadFile := TRUE
END(*CASE 'g");
T,1:
BEGIN
WriteLn;
Write(' Enter traffic type for which hardcopy is desired: °);
ReadLn(i);
IF NOT DisplayNetWork(i, NetworkName) THEN BadFile := TRUE
END(*CASE 't"*);
‘A'Va’"
BEGIN
IF NOT DisplayNetwork(0, NetworkName) THEN BadFile := TRUE;
FOR i := 1 TO NumberTrafticTypes DO
IF NOT DisplayNetwork(i,NetworkName) THEN BadFile := TRUE
END(*CASE 'a™);
oqc.loc:
BEGIN

(*“Make sure that original data is back in memory®)
IF Trafficindex < 0 THEN

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
47

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

IF RetrieveNetwork(Trafficindex, NetworkName) THEN ;
command = 'q’
END(*CASE 'q™)
END(*CASE command/Display menu*);
IF BadFile THEN
BEGIN

BEEP;

TextAttr := TextAtir OR BlinkOn;

Wiriteln;

Write(' The specified data file cannot be opened:’);

Write(" press any key to continue.’);

ReadLn;

TextAttr := TextAttr AND BlinkOff;

CirScr

END(*IF BadFile*)
END(*WHILE command ...")
%ND('CASE Display®);
‘R,r:
BEGIN
NewScreen('MAIN/Retrieve’);
MainWindow;
Writeln;
Write(" Enter disk file name for network: °);
ReadLn(NetworkName);
Write(" Enter traffic type of interest: °);
ReadLn(Trafficindex);
Writeln;
IF NOT RetrieveNetwork(Trafficindex, NetworkName) THEN
Write(' Retrieval from disk failed: *)
ELSE
BEGIN
Wirite(" Network data loaded to memory: °);
NetDefined :=TRUE
END(*IF NOT RetrieveNetwork... ELSE...*);
Write('press any key to exit to MAIN Menu.’);
ReadLn
END(*CASE Retrieve*);
T,%:
BEGIN
REPEAT
NewScreen('MAIN/Thruputs”);
MainWindow;
Write(' C(ompute, D(isplay, P(rint, Q{uit: %;
ReadLn(command);
CASE command OF

'C''e':

BEGIN
NewScreen{'MAIN/Thruputs/Compute’);
MainWindow;

Write('Compute A(ll or a S(pecific throughput? °);
ReadLn{command);
CASE command OF
‘A'Va’
BEGIN
FOR i := 1 TO NumberStations DO
IF NOT SolveThruputs(i, NetworkName) THEN
BEGIN
BEEP;
STR(i:3,message);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
48

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

message := Thruput computation failed for traffic type’
+ message;
CenterText(message)
END
ELSE Write('Thruput computed for traffic type ",i:3);
Write(": press any key')
END("CASE 'A™);
'S','s":
BEGIN
Write('Enter traffic type for which to compute throughputs: ');
ReadLn(i);
IF NOT SolveThruputs(i, NetworkName) THEN
BEGIN
BEEP;
Write('Solution for throughputs failed:’)
END
ELSE Write('Throughputs computed:’);
Write(' press any key to continue. ');
ReadlLn
END(*CASE 'S™)
END(*CASE command...*)
END(*CASE 'C™);
D"
BEGIN
WriteLn(" Function not implemented: press any key to continue.’);
ReadLn
END;
PP
BEGIN
WriteLn(' Function not implemented: press any key to continue.’);
Readln
END;
‘Q,'q": command = 'q’;
END(*MAIN/Thruput CASES*);
UNTIL command = 'q’;
END("CASE 'T™);
Pp
BEGIN
REPEAT
NewScreen('MAIN/Paths’);
MainWindow;
Write(' C(reate, A(dd, D(elete, V(erity, H(ardcopy, Q(uit: °);
ReadLn(command);
CASE command OF
'C'e:
BEGIN
WriteLn(' Function not implemented: press any key to continue.’);
ReadLn
END;
‘AVa’;
BEGIN
WriteLn(' Function not implemented: press any key to continue.’);
ReadLn
END;
'D,'d"
BEGIN
WriteLn(' Function not implemented: press any key 1o continue.’);
ReadLn
END;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
49

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

V' v
BEGIN
WriteLn(* Function not implemented: press any key to continue.’);
ReadLn
END;
H' 'R
BEGIN
WriteLn(" Function not implemented: press any key to continue.’);
ReadlLn
END;
'Q’,'q": command = 'q’
END(*CASE command...*)
UNTIL command = 'q’
END(*CASE Paths*);
'™, ‘m":

NewScreen('MAIN/Metrics');
MainWindow;
Write(' N(odes, P(aths, Q(ueue length density, H(ardcopy, E(nd: °);
ReadLn{command);
CASE command OF
'N'.'n":
BEGIN
WriteLn(* Function not implemented: press any key to continue.’);
ReadLn
END;
Pp
BEGIN
WriteLn({" Function not implemented: press any key 1o continue.’);
ReadlLn
END;
'Q,q"
BEGIN
WriteLn(" Function not implemented: press any key to continue.’);
ReadLn
END;
'H.'h'
BEGIN
WriteLn(® Function not implemented: press any key to continue.’);
ReadLn
END;
‘E’'e’: command = ‘e’
END(*CASE command...*)
UNTIL command = ‘e’
END(*CASE Metrics*);
'Q'q": quit .= TRUE
END(*MAIN Menu CASES*)
UNTIL quit
END(*Main Program*).

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
S0

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT
UNIT Data_lO; (*John R. Doner 20 July 1989°)

This unit supplies all of the procedures, data types and variables
needed to manage the input data associated with a full network
description as required by the AIRMICS MuttiMedia Network Design
Closed-Form Queueing Model.

o)

INTERFACE
USES DOS, CRT;

CONST AnyFile = $3F; (*Used by DOS FindFirst() procedure.®)
BlinkOn = BYTE(132); (*Used to blink warning messages®)
BlinkOff = BYTE(123); (*“Tum off blinking®)
MaxNodes = 30, (*Maximum number of nodes: memory limited.”)
MaxMediumTypes = 3; ("Maximum number of media types.®)
MaxTrafficTypes = 3; (*Maximum number of traffic types.®)
FormFeed = CHR(12); (‘Formfeed control code for printer.*)

DICTIONARY OF SIGNIFICANT PROGRAM VARIABLES AND TYPES

AckLength -- length of the acknowledgement for current traffic

ErrorRates|i] — missed message rates (MMR) of current tratffic type
relative to each medium

GlobalArrivalRate - hetwork-wide arrival rate of cumrent traffic type

MediumBandWidth[i] -- bandwidths (bits/second) of the available media

NumberMediumTypes -- total number of media available in the network

NumberStations -- total number communications nodes in network

NumberTratficTypes -- total number of traffic types in system

StationMultiplex[i,j] - vectors used to media multiplex traffic at stations

StationSourceRate[i] - relative traffic origination rate for station i

StationThruPutsli,jj] -- the relative station throughputs for each traffic
type (calculated from input data)

StoredData — a type used by the Fetch() procedure to determine
which type of data is to be copied to the current
data input process from previously stored data

Topologyli.j] - traffic routing transition probability matrix

TrafficLength - length of the traffic type currently being considered

h)
TYPE StoredData = (errors, arrivals, multiplex, connectivity):
VAR NumberStations,

NumberMediumTypes,

NumberTrafficTypes : INTEGER;

Topology . ARRAY]1.. MaxNodes, 0. MaxNodes] OF REAL;
StationMultiplex : ARRAY[1..MaxNodes, 1..MaxMediumTypes] OF REAL;
GlobalArrivaiRate,

TrafticLength,

AckLength : REAL;

StationSourceRate : ARRAYT1..MaxNodes] OF PEAL;

StationThruputs : ARRAY[1..MaxTratficTypes, 1..MaxNodes] OF REAL;
MediumBandWidth : ARRAY[1..MaxMediumTypes] OF REAL;
ErrorRates : ARRAY]1..MaxMediumTypes] OF REAL;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
51

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

The following procedure formats and centers the string variable passed to it
and writes it to the screen.

o)
PROCEDURE CenterText(message: STRING);

(.
The following procedure emits a short tone from the speaker to alen
the user to waming messages on the screen.

o)
PROCEDURE BEEP;

The following function adds “.top" to the input filename, and then
retrieves the data from the so-named disk file containing a network
description. "Trafficindex” designates for which traffic type the data is
to be retrieved. The input file should be closed when this procedure is
entered, and will be closed at procedure exit. TRUE is returmned only i
the retrieve operation is successful.

- [144 .)

(s evee

FUNCTION RetrieveNetwork(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;

The following function stores the computed relative throughput data to

the file named by the input FileName, after adding the extension ".thp”

to the filename. TRUE is retumed oniy if the store operation was

successful. NOTE: the throughputs should be stored under the same filename
as is the network data. The two files will have the same base name, but
extensions ".top™ for the network data and “.thp” for the throughput data

The output file should be closed when the procedure is called, and will be
closed at procedure exit.

m".'..'...'.)

FUNCTION StoreThruPuts(FileName: STRING) BOOLEAN;

The following function retrieves throughput data from g disk file,

after adding the extension “.thp™ 10 the inpat hienamg. TRUE is retumed
only if the operation is successful. The file should be closed upon

entry to the procedure, and will be closed &t procedure exil.

)
FUNCTION RetrieveThruPuts(FileName: STRiNG) BOOLEAN;

(.'.‘."' *ee

The following procedure locates specific data teids wittun the “DataFile”
file and retrieves them, writing them into the analogous program variables
representing the data type retrieved. Any previous value of that data type
extant in memory is overwritten. The data retneved & of the type
requested by the input “DataType”, and the specfc nstantiation retrieved
is that associated with the traffic type denoted by “Traticindex™ or

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
$2

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

“Trafficindex™ and "station”. For fetches of all data types except station
multiplex data, the data retumed is that associated with a previously
defined traffic type: "station” is ignored during such a request. For
station multiplex data, the data type retumned is for the current traffic
type and a previous station. TRUE is returned only if the data retrieval
was successful. Fetch neither opens nor closes the data file, and leaves
the file pointer at its original position upon exit.

)

PROCEDURE FetchData(Tratficindex, station: INTEGER; DataType: StoredData;
VAR DataFile: FILE);

in the current data. First, it checks that the rows of the Topology matrix

for the cumrent traffic type sum to one. Then it checks to see that the

sum of the StationSourceRates is one, and finally it checks to see that

no medium at any station is required to carry more than 100% of its bandwidth
in traffic as a resutt of the media multiplexing scheme. Due to the
inexactness of digital computation, the first two checks actually only

require that the sums be within 1% of 1.0. When that is the case, the
summed values are normalized to obtain the maximum precision available
within the limits of the type REAL floating point number format. FALSE is
retumed #f any constraint is not met, and an intemal message is written

to the screen indicating the nature of the inconsistency. The data file
should be ciosed upon procedure entry, and will be closed at procedure exit.
The input variable "HardCopy”, when true cause printout of the verify data
to the printer.

S o)

FUNCTION Verify(FileName: STRING; HardCopy: BOOLEAN): BOOLEAN;

The foliowing procedure prompts the user for all input data required for
the definition of a communications network. A disk file is used for output
of the data. The file, if already in existence, shoukd be closed before
procedure entry, and will be closed at procedure exit.

o %)

PROCEDURE CreateNetwork(FileName: STRING);

(".'.."

The following procedure prompts the user for desired changes to the net-
work. Use of this procedure is predicated on the existence of an already
defined network in the current directory, under the input name “FileName".
The EditNetwork procedure makes a copy of that network file on disk, and
makes all alterations to the copy. At the end of the edit session, the

user may choose whether the copy is to replace the original, or is to be
stored under a separate name. The original file to be edited should be
closed at procedure entry, and will be closed at procedure exit.

)
PROCEDURE EditNetworkFileName: STRING);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
53

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

(
The following procedure provides a hardcopy output of all the input data
required to define a network and a single traffic type. Entry of a "0" as
the traffic index results in display of the network wide variables. For
all entrys of legitimate values of "Trafficindex", the information specific
to that traffic type will be printed. The file to be used should be closed
upon procedure entry, and will be closed at procedure exit. TRUE is
retumned only if the file can be opened.

o)
FUNCTION DisplayNetwork(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;

The following procedure displays the absolute messsage throughputs of the
nodes for traffic type designated by “Trafficindex". The filename should

be the same as that under which the network topology data was stored.
The file should be closed upon procedure entry, and will be closed at
procedure exit. TRUE is returmed only if the file is found and successfully
opened.

(roeeseeneresescsanans . cesecen .

e LA 4] e - ."".')

IMPLEMENTATION

PROCEDURE CenterText(message: STRING);
VAR spaces: INTEGER;

BEGIN

| spaces := (69 - Length(message)) DIV 2;
message = “*** ' + message + ' ****’;
WriteLn(’ ':spaces, message)

END(*CenterText*);

(*The following procedure gets the global data needed to size the file. This
procedure is not available to calling programs.®)

i PROCEDURE GetGlobal(VAR DataFile: FILE);
| VAR i: INTEGER;
| BEGIN
| SEEK(DataFile, 0);
Blockread(DataFile, Numberstations, SIZEOF(NumberStations));
BlockRead(DataFile, NumberMediumTypes, SIZEOF(NumberMediumTypes));
FOR i := 1 TO NumberMediumTypes DO
BlockRead(DataFile, MediumBandWidth(i], SIZEOF(MediumBandWidth(i]));
BlockRead(DataFile, NumberTrafficTypes, SIZEOF(NumberTrafficTypes))
END(*GetGlobal*);

PROCEDURE BEEP;
BEGIN
SOUND(1000);
DELAY(200);
| NOSOUND
| END:;

| AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
54

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

FUNCTION RetrieveNetwork(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;
VAR i, j: INTEGER;

StartPoint, PreLoop, LoopSize: LONGINT;

DatafFile: FILE;

Filelnfo: SearchRec;

BEGIN
FileName := FileName + ".top’;
FindFirst(FileName, AnyFile, Fileinfo);
IF DOSEror <> 0 THEN
BEGIN
RetrieveNetwork := FALSE;
EXIT
END
ELSE
BEGIN
ASSIGN(DataFile, FileName);
RESET(DataFile, 1);
BlockRead(DataFile, NumberStations, SIZEOF(NumberStations));
BlockRead(DataFile, NumberMediumTypes, SIZEOF(NumberMediumTypes));
FOR i := 1 TO NumberMediumTypes DO
BlockRead(DataFile, MediumBandWidth(i], SIZEOF(MediumBandWidth(i]));
BlockRead(DataFile, NumberTrafficTypes, SIZEOF(NumberTrafficTypes)).
IF Trafficindex > NumberTratticTypes THEN
BEGIN
Write('This traffic type does not exist in °, FileName,': °);
Write('press any key to continue.’);
ReadLn;
CLOSE(DataFile);
RetrieveNetwork = FALSE;
EXIT
END(*IF Trafficindex > ...*);
PrelLoop = 3"SIZEOF(INTEGER) + NumberMediumTypes*SIZEOF(REAL);
LoopSize = (3 + NumberStations + (NumberStations + 1)°NumberMediumTypes
+ SQR(NumberStations))*SIZEOF(REAL);
StartPoint := PrelLoop + (Trafficindex - 1)*LoopSize;
SEEK(DataFile, StartPoint);
BlockRead(DataFile, GlobalAmivalRate, SIZEOF{GlobalAmivalRate));
BlockRead(DataFile, TrafficLength, SIZEOF(TrafficLength));
BlockRead(DataFile, TrafficLength, SIZEOF(TrafticLength));
BlockRead(DataFile, AckLength, SIZEOF(AckLength));
FOR i := 1 TO NumberMediumTypes DO
BlockRead(DataFile, ErrorRates|i], SIZEOF (EmorRatesl[i]));
FOR i := 1 TO NumberStations DO
BlockRead(DataFile, StationSourceRate[i], SIZEOF(StationSourceRate]i]));
FOR i := 1 TO NumberStations DO
FOR j := 1 TO NumberMediumTypes DO
BlockRead(DataFile, StationMultiplex[i,jJ, SIZEOF(StationMuttiplex[i,i}}):
FOR i := 1 TO NumberStations DO
FOR j := 0 TO NumberStations DO
BlockRead(DataFile, Topologyli.jj. SIZEOF(Topology(i.il):
RetrieveNetwork = TRUE;
CLOSE(DataFile)
END(*IF DOSError...ELSE...*)
END("RetrieveNetwork®);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
85

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

FUNCTION StoreThruputs(FileName: STRING): BOOLEAN;
VAR i, j: INTEGER;
ThruputFile: FILE;

BEGIN
FileName = FileName + '.thp’;
s ASSIGN(ThruputFile, FileName);
{$t-}
REWRITE(ThruputFile, 1);
{$1+}
IF IOResult <> 0 THEN
BEGIN
Write("Throughput storage file could not be opened: press any key to’);
WriteLn(' continue.’);
ReadlLn;
StoreThruputs = FALSE;
EXIT
END
ELSE
BEGIN

(‘insert the following data to make the file self-contained.*)

BlockWrite(ThruputFile, NumberStations, SiZEOF(NumberStations));
BlockWrite(ThruputFile, NumberTrafficTypes, SIZEOF(NumberTratficTypes));

FOR i := 1 TO NumberTrafficTypes DO
FOR j := 1 TO NumberStations DO
BlockWrite(ThruputFile, StationThruputs]i, j].
SIZEOF(StationThruputsi,i}));

StoreThruPuts := TRUE;

CLOSE(ThruputFile)

END(*IF 10Result... ELSE...*)
END(*Store Thruputs*);

FUNCTICN RetrieveThruputs(FileName: STRING): BOOLEAN;
VAR i, j: INTEGER;

ThruputFile: FILE;

Filelnfo: SearchRec:

BEGIN
FileName := FileName + 'thp’;
FindFirst(FileName, AnyFile, Fileinfo);
IF DOSErmor <> 0 THEN
BEGIN
Write("Throughput file °, Filename,’ not found: press any key to °);
WiriteLn('continue.");
ReadLn;
RetrieveThruputs = FALSE;
EXIT
END
ELSE
BEGIN
ASSIGN(ThruputFile, FileName);
{$1-}
REWRITE(ThruputFile, 1);
{$1+}
IF 1OResult <> 0 THEN
BEGIN

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
56

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

Write(' Throughput storage file could not be opened: press any key to’);
WriteLn{' continue.’);
ReadLn;
RetrieveThruputs := FALSE;
EXIT
END
ELSE
BEGIN
BlockRead(ThruputFile, NumberStations, SIZEOF(NumberStations));
BlockRead(ThruputFile, NumberTrafficTypes, SIZEOF(NumberTrafficTypes));
FOR i :== 1 TO NumberTrafficTypes DO
FOR j := 1 TO NumberStations DO
BlockWrite(ThruputFile, StationThruputs]i, jl,
SIZEOF(StationThruputs]i.i]));
RetrieveThruputs = TRUE;
CLOSE(ThruputFile)
END(*IF IOResult...ELSE...")
END(*IF DOSEmor ... ELSE...")
END(*Retrieve Thruputs®);

PROCEDURE FetchData(Trafficindex, station: INTEGER; DataType:
StoredData; VAR DataFile: FILE);

VAR i, j: INTEGER;
FileStart, PreL.oop, LoopSize, InLoop, StartPoint: LONGINT;

BEGIN
FileStart := FilePos(DataFile);
Preloop := 3*SIZEOF(INTEGER) + NumberMediumTypes*SIZEOF(REAL);
LoopSize = (3 + NumberMediumTypes + 2°'NumberStations + SQR(NumberStations) +
NumberStations*NumberMediumTypes)*SIZEOF(REAL);
StartPoint := PreLoop + (Trafficindex - 1)*LoopSize;
CASE DataType OF
errors:
BEGIN
InLoop := StartPoint + 3*SIZEOF(REAL);
Seek(DataFile, InLoop);
FOR i := 1 TO NumberMediumTypes DO
BlockRead(DataFile, ErrorRates]i], SIZEOF(ErrorRates]i]))
END("errors*);
arrivals:
BEGIN
InLoop := StarntPoint + (3 + NumberMediumTypes)'SIZEOF(REAL);
Seek(DataFile, inLoop);
FOR i := 1 TO NumberStations DO
BlockRead(DataFile, StationSourceRate[i], SIZEOF(StationSourceRatefi]))
END(*arrivals®);
multiplex:
BEGIN
InLoop := StartPoint + (3 + NumberMediumTypes + NumberStations +
(station - 1)*NumberMediumTypes)*SIZEOF(REAL);
SEEK(DataFile, InLoop);
FOR j := 1 TO NumberMediumTypes DO
BlockRead(DataFile, StationMuttiplex[station,j],
SIZEOF(StationMultiplexstation,j]))
END("multiplex*);
connectivity:
BEGIN
InLoop := StartPoint + (3 + NumberMediumTypes

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
57

| MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

+ NumberStations*(NumberMediumTypes + 1))*SIZEOF(REAL);
SEEK(DataFile, InLoop);
FOR i := 1 TO NumberStations DO
FOR j := 0 TO NumberStations DO
BlockRead(DataFile, Topology(i,i], SIZEOF(REAL));
END("connectivity*)
END(*CASES");
Seek(DataFile, FileStart)
END(*FetchData*);

FUNCTION Verify(FileName: STRING; HardCopy: BOOLEAN): BOOLEAN;
VAR i, j, k, m: INTEGER,;

sum: REAL;

message, message2: STRING;

Transitions, Capacity, SourceRates: BOOLEAN;

DataFile: FILE;

Filelnfo: SearchRec;

MultiplexSums: ARRAY[1..MaxNodes,1..MaxMediumTypes] OF REAL;

Ist: TEXT;

BEGIN
(*Open file.*)

FileName := FileName + ".top';
FindFirst(FileName, AnyFile, Fileinfo);
IF DOSError <> 0 THEN

BEGIN

(*Can't open, so make a graceful exit.*)

Write('File *, FileName, ' not found: press any key to continue.’);
ReadLn;
EXIT
END
ELSE
BEGIN
IF HardCopy THEN
BEGIN
ASSIGN(lst, 'prn’);
REWRITE(ist)
END;

("Open file, and get the essential parametens & the top of file.")

ASSIGN(DataFile, FileName);
RESET(DataFile, 1);
BlockRead(DataFile, NumberStations SWT OF iINumberStations)):
BlockRead(DataFile, NumberMedumTypes S22t OF (NumberMediumTypes));
FOR i := 1 TO NumberMediumTypes DO

BlockRead(DataFile, MediumBandwan.] S EOF (MediumBandWidth(i])):
BlockRead(DataFile, NumberTrattcTypes SJEOF (NumberTratticTypes));

IF HardCopy THEN

BEGIN
WriteLn(Ist, "Verification of routing transgon probabilities:’);
WriteLn(ist)

END;

Transitions = TRUE;

FOR i := 1 TO NumberTratficTypes DO

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
S8

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT
BEGIN
(*First check for consistency of topology information.*)

FetchData(i, 0, connectivity, DataFile);
FOR j := 1 TO NumberStations DO
BEGIN
sum = 0.0;
FOR k = 0 TO NumberStations DO sum := sum + Topologylj, kl;
IF ABS(sum - 1.0) <= 0.01 THEN
EESOE? m = 0 TO NumberStations DO Topology{i,m] := Topology[i,mysum
BEGIN
Transitions = FALSE;
Str(i:3, message);
message = 'WARNING: routing probability data, traffic type °
+ message + ' is inconsistent.’;
CenterText(message);
IF HardCopy THEN
BEGIN
Write(ist, ° Routing probability data for traffic type °,i:3);
WriteLn(lst, *, station *,j:3, ' sums to ‘, sum:5:3)
END
END;
END(*FOR j ...")
END(*FOR i...*);
WriteLn;
IF (HardCopy AND Transitions) THEN
WriteLn(ist, 'No inconsistencies were found.’);

("Next, check for consistency of source rate data.*)

IF HardCopy THEN
BEGIN
WiriteLn(ist);
WriteLn(lst);
WriteLn(lst, Verification of station amival rate data:’);
WiriteLn(lst)
END;
SourceRates = TRUE;
FOR i := 1 TO NumberTrafficTypes DO
BEGIN
sum = 0.0;
FetchData(i, 0, arrivals, DataFile);
FOR j .= 1 TO NumberStations DO sum « sum + StationSourceRatelj);
IF ABS(sum - 1.0) <= 0.01 THEN
FOR j := 1 TO NumberStations DO
StationSourceRate[j] .= StationSourceRate{jysum
ELSE
BEGIN
SourceRates = FALSE;
Str(i:3, message);
message .= 'WARNING: station armval rates tor tratfic type’
+ Mmessage + ' are inconsistent
CenterText(message);
IF HardCopy THEN
BEGIN
Write(Ist, ° Station arrival rates for trafic type °, i:3);
WriteLn(ist, * sum 10 ',sum:5:2)

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
59

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

END o
END(*FOR j ..*)
END(*FOR i...*);
Writeln;
IF (HardCopy AND SourceRates) THEN
WiriteLn(lst, ‘No inconsistencies were found.’);

(*Finally, sum up the traffic type demands on the available channels.®)

IF HardCopy THEN
BEGIN
WiriteLn(lst);
WriteLn(ist);
WriteLn(ist, "Verification of channel capacity constraints: °);
WriteLn(lst)
END;
Capacity := TRUE;
FOR i := 1 TO NumberStations DO
FOR j := 1 TO NumberMediumTypes DO MultiPlexSums]i,j] := 0.0;
FOR i := 1 TO NumberTrafficTypes DO
FOR j := 1 TO NumberStations DO
BEGIN
FetchData(i, j, multiplex, DataFile);
FOR k := 1 TO NumberMediumTypes DO
MultiplexSumslj k] := MultiplexSums{j,k] + StationMultiplex[j, k]
END(*FOR i, j, k...*);
FOR j := 1 TO NumberStations DO
FOR k = 1 TO NumberMediumTypes DO
IF MultiplexSumslj, k] > 1.0 THEN
BEGIN
STR(k:3, message);
STR(j:3, message2);
message = 'WARNING: channel capacity for medium ' + message +
', station ' + message2 + ' exceeded.’;
CenterText(message);
IF HardCopy THEN
BEGIN
Write(lst, © Multiplexed channel capacity for medium °k:3);
WiriteLn(lst,’ at station *j:3, * sums to ‘MultiplexSumsfj k]:5:3)
END;
Capacity := FALSE
END(*FOR i, j, IF...*);
IF (HardCopy AND Capacity) THEN
WriteLn(ist, ‘No inconsistencies were found.);
IF HardCopy THEN CLOSE(lst);
Verify := Transitions AND Capacity AND SourceRates
END(*IF DOSError...ELSE...*)
END("Verify*);

PROCEDURE CreateNetwork;
VAR i, j. k, index: INTEGER,;
sum: REAL;

FullName, message: STRING;
command: CHAR;

DataFile: FILE;

Fileinfo: SearchRec;

BEGIN

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
60

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

(*File name .ntry*)
REPEAT
CenterText'NETWORK CREATION’);
command = 'y’;
Writeln;
Wiritel.n('Data will be stoied 0 disk as it is entered.’);
WritelLn;
FuliName := FileName + '.top’;
FindFirst(FullName, AnyFile, Fileinfo);
IF DOSEmor = 0 THEN
BEGIN
WriteLn;
BEEP; _
TextAttr := TextAtir OR BlinkOn;
CenterText(WARNING: Like-named file already on disk will be destroyed.’);
TextAtlr := TextAttr AND BlinkOft;
Writeln;
Write(’ Proceed anyway? (y/n): *);
ReadlLn{command);
CirScr
END
ELSE
command = 'y";
UNTIL command = 'y’
ASSIGN(DataFile, FullName);
REWRITE(DataFile, 1);

(*“NumberStations®)

REPEAT
Write('Enter number of communications stations (not exceeding ');
Write(MaxNodes:3,"): °);
ReadLn(NumberStations)

UNTIL NumberStations <= MaxNodes ;

BlockWrite(DataFile, NumberStations, SIZEOF(INTEGER));

WritelLn;

(*"NumberMediaTypes®)
REPEAT
Write(’Enter number of media types (nhot exceeding °);
Write(MaxMediumTypes:3,): °);
ReadLn(NumberMediumTypes)
UNTIL NumberMediumTypes <= MaxMediumTypes;
BlockWrite(DataFile, NumberMediumTypes, SIZEOF(INTEGER));
WiriteLn;

(*MediumBandWidth[.]")

FOR i := 1 TO NumberMediumTypes DO

BEGIN
Write(' Enter bandwidth of medium type °, i:3, ' (Kbits/second): °);
ReadLn(MediumBandWidthi]);
BlockWrite(DataFile, MediumBandWidth[i], SIZEOF(MediumBandWidth{i]));

END;

WriteLn;

{*"NumberTraflicTypes®)
REPEAT
Write('Enter number of traffic types (not exceeding).
Write(MaxTrafficTypes:3, °):).
ReadLn(NumberTrafficTypes)

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
61

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

UNTIL NumberTrafficTypes <= MaxTrafficTypes; °
BlockWrite(DataFile, NumberTratficTypes, SIZEOF(NumberTrafficTypes)).
WiritelLn,

(*All remaining data is traffic type dependent, and so will be entered
tor each traffic type.*)

FOR i := 1 TO NumberTratficTypes DO
BEGIN
CirScr;
WriteLn;
BEEP;
TextAttr := TextAttr OR BlinkOn;
Str(i:3, message);
message = ‘Data input for traffic type ' + message;
CenterText(message);
TextAttr = TextAttr AND BlinkOff;

(*GlobalArrivalRate*)
WritelLn;
Write('Enter the network-wide traffic type arrival rate (messages/sec.):),
ReadLn(GlobalArrivalRate);
BlockWrite(DataFile, GlobalArrivalRate, SIZEOF(GlobalArrivalRate));
WriteLn;

("TrafficLength®)
Write("Enter mean message length (in bits) for trattic type: °);
ReadLn(TrafficLength);
BlockWrite(DataFile, TratfticLength, SIZEOF(TrafficLength));
WriteLn;

(*AckLength®)
Write('Enter mean length (bits) for acknowledgement message (0 it none sent): °);
ReadLn(AckLength);
BlockWrite(DataFile, AckLength, SIZEOF(AckLength));
WiriteLn;

(*ErrorRates")
CirScr;
CenterText('Entry of traffic type MMR for each medium type’);
WiritelLn;
Write('Copy previous missed message rates? (nvy): °);
ReadbLn(command);
{F command = 'y’ THEN
BEGIN
REPEAT
Write('Enter previously defined traffic type from which o copy:).
ReadLn(index)
UNTIL index < i;
FetchData(index, 0, errors, DataFile)
END
ELSE
FOR j := 1 TO NumberMediumTypes DO
BEGIN
Write('Enter missed message rate for medium °j2,": °);
ReadLn(ErrorRates]j])
END;
FOR j := 1 TO NumberMediumTypes DO
BlockWrite(DataFile, EmorRates]j], SIZEOF(ErorRateslj)));

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
62

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT
WiriteLn;

(*StationSourceRate")
CirScr;
CenterText('Station relative arrival rates for traffic type’).
WiriteLn;
Wirite('Copy previous arrival rates? (nvy): *);
ReadLn{command);
IF command = 'y’ THEN
BEGIN
REPEAT
Write('Enter previously defined traffic type from which to copy: ');
ReadLn(index)
UNTIL index < i;
FetchData(index, 0, arrivals, DataFile);
END
ELSE
FOR j := 1 TO NumberStations DO
BEGIN
Wirite('Enter station arrival rate for station *,j:2,": ');
SgadLn(StationSourceRatem)

FOR i':= 1 TO NumberStations DO

BlockWrite(DataFile, StationSourceRate[j], SIZEOF(StationSourceRate[j])):
Writeln;

(*StationMuttiplex*)
CirScr;
CenterText('Entry of traffic type/media type multiplex data’);
WriteLn;
FOR j := 1 TO NumberStations DO
BEGIN
WriteLn{'Entry of media multiplex vector for station *,j:3,".");
Wirite('Copy previous multiplex vector? (ym):).
ReadLn{command);
IF command = 'y’ THEN
BEGIN
REPEAT
Write('Enter previously defined station trom which to copy: *);
ReadLn(index)
UNTIL index < j;
FetchData(i, index, multiplex, DataFde)
END
ELSE
FOR k := 1 TO NumberMediumTypes DO
BEGIN
Write('Enter fraction of medium °, k 2" aedcated to this trafiic: ');
ReadLn(StationMultiplex{j, k])
END;
FOR k = 1 TO NumberMediumTypes DO
BlockWrite(DataFile, StationMuRpiex(; k] SIZEOF(StationMuttiplex]j.k]));
WriteLn
END(*FOR j...*);

(*Topology*)
ClrScr,
CenterText('Entry of topology matrix for thes trathr 'ype’);

WriteLn;
WriteLn('Note: station "0” is the sink for al messages, so enter the °);

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
&3

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

WriteLn(’ proportion of traffic terminating at node i for the °);
WriteLn(’ [i, 0] entry of the topology matrix.’);
WriteLn;
Write('Copy previous topology matrix? (y/n): ’);
ReadbLn{command);
IF command = 'y’ THEN
BEGIN
REPEAT
Write('Enter previously defined traffic type from which to copy: ’);
ReadLn(index)
UNTIL index < i;
FetchData(index, 0, connectivity, DataFile)
END
ELSE
BEGIN

(*Initialize all transition probabilities to zero.®)

FOR j := 1 TO NumberStations DO
FOR k := 0 TO NumberStations DO Topologyli, k] := 0.0;
WiriteLn('Enter (origin, destination, probability), with data entries’);
WriteLn(' separated by spaces, followed by a <ENTER>. To terminate °);
WriteLn('the process, enter a probability of zero with any node pair.’);
WriteLn;
REPEAT
Wirite('Origin node, Destination Node, Probability --> °);
ReadLn(j, k, sum);
IF sum <> 0 THEN Topology{j, k] := sum
UNTIL sum = 0.0
END(*IF command...ELSE...*);
FOR j := 1 TO NumberStations DO
FOR k := 0 TO NumberStations DO
BlockWrite(DataFile, Topologylj.k]. SIZEOF(Topologylj.k})):
WriteLn
END(*FOR i ...");
CLOSE(DataFile);

(*Data verification®)

ClrScr,
WritelLn;
CenterText('DATA VERIFICATION");
WritelLn;
IF NOT Verify(FileName, FALSE) THEN
BEGIN
BEEP,
TextAttr := TextAttr OR BIlinkOn;
CenterText(WARNING: this data must be edited before use.’);
TextAttr = TextAttr + BlinkOff
ENd
ELSE
WriteLn('Data entered does not violate any consistency rule.’),
Write(': press any key to continue.’);
ReadLn
END(*CreateNetwork*);

PROCEDURE EditNetwork(FileName: STRING);
VAR i, j, EditChoice, index: INTEGER;
command: CHAR;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
64

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

quit: BOOLEAN;

value, sum: REAL;

DataFile, TempFile: FILE;

Filelnfo: SearchRec;

TempFileName, NewName: STRING;

data: BYTE;

PreLoop, LoopSize, InLoop, StartPoint: LONGINT;

BEGIN
quit := FALSE;

(*Create a copy of the input data file on which to make editing changes.®)

TempFileName = FileName + '.tmp’;
FileName := FileName + ".top’;
FindFirst(FileName, AnyFile, Filelnfo);
IF DOSError <> 0 THEN
BEGIN
Write('Cannot find the file to be edited: press any key to continue.’);
ReadLn;
EXIT
END;
ASSIGN(DataFile, FileName);
RESET(DataFile, 1);
ASSIGN(TempFile, TempFileName);
REWRITE(TempFile, 1);
WHILE NOT EOF(DataFile) DO
BEGIN
BlockRead(DataFile, data, 1);
BlockWrite(TempFile, data, 1)
END{*WHILE NOT...*);
GetGlobal(DataFile); (*Get the required global parameters from the file.*)
CLOSE(DataFile);

(*Obtain essential "sizing” parameters for getting around in the file.*)

PreLoop := 3*SIZEOF(INTEGER) + NumberMediumTypes*SIZEOF(REAL);

LoopSize = (3 + NumberMediumTypes + 2°NumberStations + SQR(NumberStations) +
NumberStations*NumberMediumTypes)*SIZEOF(REAL);

(*Main edit menu follows.*)

Writeln;

REPEAT
WriteLn(" Edit functions are as follows:");

WriteLn(" 0. exit the edit function,’);
WriteLn(" 1. modity media bandwidths,’);
WriteLn(" 2. modify traffic type globai arrival rates,’);
WriteLn(' 3. modify traffic type traffic length,”;
WriteLn{" 4. modify traffic type acknowledgement length,’);
WriteLn(" 5. modify traffic type/medium type error rates’);
WriteLn(" 6. modify traffic type station amival rates,’);
WriteLn(" 7. modify traffic type medium muRiplex vector,’);
WriteLn(" 8. modity traffic type station connectivity,’);
Writeln;
Write(" Enter integer corresponding to choice: °);
ReadLn(EditChoice);
CASE EditChoice OF

0: (*Exit procedure and saving edited file to disk.*)

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
65

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

BEGIN
quit := TRUE;
CLOSE(TempFile);
WiriteLn;
Write(' Save as O(riginal, as N(ew, or E(xit without saving?: °);
ReadLn(command);
CASE command OF
'0','O":
BEGIN
ERASE(DataFile);
RENAME(TempFile, FileName)
END(*CASE '0™);
'n,N":
BEGIN
REPEAT
Write(' Enter filename under which to store edited data: °);
ReadLn(NewName);
NewName = NewName + 'top’;
FindFirst(NewName, AnyFile, Fileinfo);
IF DOSError = 0 THEN
BEGIN
WriteLn;
BEEP;
TextAttr := TextAttr OR BiinkOn;
CenterText('WARNING: File of that name already exists.’);
TextAttr = TexiAttr AND BlinkOff;
WiriteLn;
Write(' Press any key to continue.’);
ReadLn(command)
END
ELSE
BEGIN
RENAME(TempFile, NewName);
WriteLn(’ File ', NewName, 'stored to disk.");
END
UNTIL DOSError <> 0
END;
‘e’,'E': ERASE(TempFile)
END(*CASE command...”)
END(*CASE 0°);
1 -

BEGIN
REPEAT
Writeln;
Write(" Modify which medium bandwidth?: °);
ReadLn(index)
UNTIL index <= NumberMediumTypes;
StartPoint := 2°SIZEOF(INTEGER)

+ (index - 1)*SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value, SIZEOF(vale)).
WriteLn(’ Existing value is °, value:8:2),
Write(' Modify to what value?: *);
ReadLn(value);

SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 1°);

2.

BEGIN

(*Modify media bandwidths®)

(*Modify traffic type global arrival rate®)

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
66

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

REPEAT
WriteLn;
Write(" Modify which traffic type global arrival rate?: °);
ReadLn(index)

UNTIL index <= NumberTrafficTypes;

StartPoint := PreLoop + (index - 1)*LoopSize;

SEEK(TempFile, StartPoint);

BlockRead(TempFile, value, SIZEOF(value));

WriteLn(" Existing value is ', value:8:2);

Write(' Modify to what value?: *);

ReadLn(value);

SEEK(TempFile, StartPoint);

BlockWrite(Tempk-ile, value, SIZEOF(value))
END("CASE 2°);

3: (*Modify traffic type traffic length®)
BEGIN
REPEAT
WritelLn;
Wirite(' Modity which traffic type traffic length?: °);
ReadLn(index)

UNTIL index <= NumberTrafficTypes;

StartPoint := PreLoop + (index - 1)*LoopSize + SIZEOF(REAL);

SEEK(TempFile, StartPoint);

BlockRead(TempkFile, value, SIZEOF(value));

WriteLn(' Existing value is °, value:8:2);

Wirite(Modify to what value?: °);

ReadLn(value);

SEEK(TempFile, StartPoint);

BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 3°);
4: ("Modify traffic type acknowledgement length*)
BEGIN

REPEAT

WriteLn;
Write(' Modity which traffic type acknowledgement length?: °);
ReadLn(index)

UNTIL index <= NumberTrafficTypes;

StartPoint := PreLoop + (index - 1)*LoopSize + 2'SIZEOF(REAL);

SEEK(TempFile, StartPoint);

BlockRead(TempFile, value, SIZEOF(value));

WriteLn{' Existing value is ', value:8:2);

Write(" Modify to what value?: °);

ReadLn(value);

SEEK(TempFile, StartPoint);

BlockWrite(TempFile, vaiue, SIZEOF(value))

END(*CASE 4%),
5: (*Modity traffic type/medium type error rates®)
BEGIN
REPEAT
WriteLn;
Write(" Modify error rate for which tratfic/medium pair?: °);
ReadLn(index, i)
UNTIL {(index <= NumberTratficTypes) AND (i <= NumberMediumTypes));
StartPoint ;= PreLoop + (index - 1)°LoopSize +
(2 + i)*SIZEOF(REAL);

SEEK(TempFile, StartPoint);

BlockRead(TempFile, value, SIZEOF(value));

WriteLn('Existing value is *, value:6:4);

Write('Modity to what value?: °);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
67

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

ReadLn(value);

SEEK(TempFile, StartPoint);

BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 5°);
6: (*Modify station source rates for traffic type*)
BEGIN

REPEAT
WriteLn;
Write(" C(hange station source rate, E(xit (c/e):);
ReadLn(command);
CASE command OF
‘¢, 'C"
BEGIN
REPEAT
Writel.n;
Write(" Modity source rates for which traffic type/’);
Write('station?: °);
ReadLn(index, i)
UNTIL ((index <= NumberTrafficTypes) AND (i <=MumberStations));
StartPoint := PreLoop + (index - 1)*LoopSize
+ (2 + i + NumberMediumTypes)*SIZEOF(REAL);
SEEK(TempFile, StartPoint); .
BlockRead(TempFile, value, SIZEOF(value));
WriteLn(' Existing value is °, value:8:2);
Wirite(’ Modify to what value?:);
ReadLn(value);
SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 'c™);
‘e’ 'E":
END("CASE command...")
UNTIL command = ‘e’
END(*CASE 6°);
7: ("Modity traffic type medium muttiplex vector®)
BEGIN
REPEAT
WriteLn;
Write(" C(hange a multiplex value, or E(xit (c/e): °);
ReadLn{command);
CASE command OF
'c’, 'C"
BEGIN
REPEAT
WiritelLn;
Write(" Modity medium multiplex vector for which traffic’);
Write(' type/ statiorv medium?: °);
Readtn(index, i, j)
UNTIL ((index <= NumberTrafficTypes) AND (i <= NumberStations)
AND(j <= NumberMediumTypes));
StartPoint := PreLoop + (index - 1)°LoopSize
+ (3 + NumberMediumTypes + NumberStations
+ (i - 1)°"NumberMediumTypes + j - 1)*SIZEOF(REAL);
SEEK(TempFile, StartPoint);
Blockilead(TempfFile, value, SIZEOF(value));
WriteLn(" Existing value is °, value8:2);
Write(" Modify to what value?: °);
ReadLn(value);
SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
68

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

END(*CASE 'c™);
‘e’ 'E":
END(*CASE command...")
UNTIL command = ‘e’
END(*CASE 7°);
8.

BEGIN
REPEAT
WritelLn;
Write(' C(hange a transition probability, or E(xit (c/e):);
ReadLn{command);
CASE command OF
‘¢, 'C"
BEGIN
REPEAT
WritelLn;
Write("Modity topology for which traffic type/ origin’);
Write('/destination stations?: *);
ReadLn(index)
UNTIL ((index <= NumberTrafficTypes) AND (i <= NumberStations)
AND (j <= NumberStations));
StartPoint := PreLoop + (index - 1)’LoopSize
+ (3 + NumberMediumTypes + NumberStations*(NumberMediumTypes + 1)
+(i - 1)*NumberStations + j)* SIZEOF(REAL);
SEEK(TempFile, StartPoint);
BlockRead(TempFile, value, SIZEOF(value));
WriteLn(' Existing value is *, value:8:2);
Write(' Modify to what value?: *);
ReadLn(value);
SEEK(TempFile, StartPoint);
BlockWrite(TempFile, value, SIZEOF(value))
END(*CASE 'c™);
‘e’ 'E"
END{(*CASE command...*)
UNTIL command = ‘e’
END(*CASE 8°)
END(*CASES"*)
UNTIL quit
END(*EditNetwork*);

FUNCTION DisplayNetwork(Tratficindex: INTEGER. FileName: STRING):BOOLEAN;
VAR i, j: INTEGER,;

PreLoop, LoopSize, StartPoint: LONGINT.

DataFile: FILE;

Fileinto: SearchRec:

Ist: TEXT;

BEGIN
FileName := FileName + ".top’;
FindFirst(FileName, AnyFile, Fileinfo},
IF DOSEror <> 0 THEN
BEGIN
DisplayNetwork = FALSE;
EXIT
END
ELSE
BEGIN

AIRMICSMHARRIS CONTRACT DAKF11-88-C-0052
69

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

ASSIGN(DataFile, FileName),
RESET(DataFile, 1);
ASSIGN(lst, '‘pm);
REWRITE(Ist);

IF Trafficindex = 0 THEN
BEGIN

(“print out the global information.*)

GetGlobal(DataFile);
WriteLn(lst, '"GLOBAL DATA FOR NETWORK DEFINITION IN °, FileName);
WriteLn(ist);
WriteLn(list, 'Number of network nodes = °, NumberStations:3);
WriteLn(Ist, 'Number of medium types = ', NumberMediumTypes:3);
WiriteLn(ist, ‘Number of traffic types = ', NumberTrafficTypes:3);
WriteLn(ist);
WritelLLn(lst, ‘Media Bandwidths:’);
FOR i := 1 TO NumberMediumTypes DO
BEGIN
Wirite(Ist, ‘Bandwidth for medium °, i:3, *
WriteLn(Ist, MediumBandWidth[i] 82 Kan/sec)
END;
WriteLn(Ist, FormFeed)
END
ELSE
BEGIN

(*Print out the specific information concerning a given traffic type.*)

GetGlobal(DataFile);

PreLoop = 3*SIZEOF(INTEGER) + NumberMediumTypes*SIZEOF(REAL);

LoopSize = (3 + NumberMediumTypes + 2*NumberStations +
SQR(NumberStations) + NumberStations*NumberMediumTypes)*SIZEOF(REAL);

StartPoint .= PreLoop + (Trafficindex - 1)*LoopSize;

SEEK(DataFile, StartPoint);

(“global arrival rate, message length, acknowledgement length*®)

BlockRead(DataFile, GlobalArrivalRate, SIZEOF(GiobalAmivalRate));
BlockRead(DataFile, TrafficLength, SIZEOF(TrafficLength));
BlockRead(DataFile, AckLength, SIZEOF(AckLength));

Write(Ist, INFORMATION FOR TRAFFIC TYPE ', Trafficindex:3);
WriteLn(ist .’ IN FILE °’, FileName);

WriteLn{lst);

Write(ist, Traffic type global arrival rate = °);

WriteLn(ist, GlobalAmrrivalRate:9:2, ' messages/sec.’);

Write(lst, Traffic type message length =)

WriteLn(Ist, TrafficLength:8:1," bits.’);

Wirite(Ist, ‘Traffic type acknowledgement length = °);

WriteLn(ist, AckLength:8:1, ' bits.’);

WriteLn(ist);

(*missed message rates for all medium types.®)

FetchData(Trafficindex, 0, errors, DataFile);
WriteLn(ist, Tratfic type missed message rates for the medium types:’)
FOR i := 1 TO NumberMediumTypes DO

WriteLn(lst, 'MMR for medium type ",i:3, ' = ' ErrorRates|i}5:3);
WriteLn(lst);

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
70

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

(*source rates for traffic type at each station®)

FetchData(Trafficindex, 0, amrivals, DataFile);

WriteLn(lst, 'Arrival rate for this traffic type at each station:’);

FOR i .= 1 TO NumberStations DO

BEGIN
Write(Ist,’Arrival rate at station ', i:3,' = °);
WriteLn(lst,StationSourceRate[i]:5:4," messages/sec.’)

END;

Write(lst, FormFeed);

(*station muttiplex vectors®)
FOR j := 1 TO NumberStations DO
FetchData(Trafficindex, j, muttipiex, DataFile);
WriteLn(ist, ‘Muttiplex vectors for traffic type °, Trafficindex:3);
WiriteLn(lIst);
WriteLn(lst,’ *:20,'Medium 1 Medium 2 Medium 3°);
FOR i := 1 TO NumberStations DO
BEGIN
Wirite(Ist,'Station *,i:3, * "9);
FOR j := 1 TO NumberMediumTypes DO
Wirite(lst,StationMultiplex(i,j]:5:3, * "8);
‘WriteLn(lst)
END;
Wirite(Ist, FormFeed);

(“traffic type topology matrix)

FetchData(Trafficindex, 0, connectivity, DataFile);
Write(ist, ‘Routing transition probabilities for traffic type °);
WriteLn(ist, Trafficindex:3);
WriteLn(ist, ‘(The "0-th™ entry represents traffic absorption at station)’);
WriteLn(ist);
Write(lIst, * ':5);
FOR i := 0 TO NumberStations DO Write(ist, i:3, * ':5);
WriteLn(ist);
*OR i := 1 TO NumberStations DO
BEGIN
Write(lst, i2, © °);
FOR j := 0 TO NumberStations DO Write(Ist, Topologyli,j]:5:3, ' ":3);
WriteLn(Ist)
END(*FOR i...*);
Write(lst, FormFeed)
END(*IF Trafficindex...ELSE...*);
CLOSE(Ist);
CLOSE(DataFile);
DisplayNetwork := TRUE
END(*IF DOSErmor...ELSE...*)
END(*DisplayNetwork");

FUNCTION DisplayThruputs(Trafficindex: INTEGER; FileName: STRING): BOOLEAN;
VAR i: INTEGER;

ThruputFile: FILE;

StartPoint: LONGINT;

value: REAL;

Filelnfo: SearchRec;

Ist: TEXT;

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
[l

MULTIMEDIA NETWORK DESIGN STUDY - FIRST YEAR FINAL REPORT

BEGIN

FileName := FileName + ".thp';

FindFirst(FileName, AnyFile, Fileinfo),

IF DOSEmor <> 0 THEN

BEGIN
Wirite('Throughput file *, FileName,’ could not be found:’);
WriteLn('press any key fo continue.’);
ReadLn;
DisplayThruputs := FALSE;
EXIT

END

ELSE

BEGIN
ASSIGN(ist, 'pm");
REWRITE(lst);
WriteLn(ist, THROUGHPUT DATA FOR TRAFFIC TYPE ' Trafficindex:3);
WriteLn(ist);
ASSIGN(ThruPutFile, FileName);
RESET(ThruputFile, 1);
BlockRead(ThruputFile, NumberStations, SIZEOF(NumberStations));
StartPoint := 2°SIZEOF(INTEGER!

+ (Trafficindex - 1)*NumberStations*SIZEOF(REAL);
SEEK(ThruputFile, StartPoint);
FOR i := 1 TO NumberStations DO
BEGIN
BlockRead(ThruputFile, value, SIZEOF(vaiue));

E,\\iVDriteLn(lst, "Station °, i:3, ' throughput = ' value:5:3)
Write(ist, FormFeed);
CLOSE(ThruputFile);
CLOSE(Ist);
DisplayThruputs := TRUE

END("IF DOSError...ELSE...*);

END(*Display Thruputs®);

BEGIN

END(*Data_IO").

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
72

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT
UNIT NetComp; (*John R. Doner, 3 September 1989°)

(*This unit contains the necessary computional proccedures to determine the
network relative throughputs, and all derived network performance measures
associated with the AIRMICS Multimedia Network Design Program (NetCalc).*)

INTERFACE
USES DOS, Data_IO;

(“‘- SRR ONERN RSN R ARRR DGR NAGE0E0CE0 0SS LS ERRRIRARRRIROdReed -

The following procedure solves the required linear system of equations to
obtain the network relative throughputs for a given traffic type. Input

to the procedure is the traffic type and the network file name containing
the network data, and the output solution is then placed in the appropriate
row of the StationThruput| | array (see Data_lO unit for definition.).

FALSE is retumed only if the equations were found to be non-solvable (i.e.,
singular matrix). The file containing network data shouid be closed at
entry to this procedure, and will be closed at exit. Note that this

function does not store the computed throughputs to disk.

FUNCTION SolveThruputs(Trafficindex: INTEGER; NetworkName: STRING): BOOLEAN,;
IMPLEMENTATION

FUNCTION SolveThruputs(Trafficindex: INTEGER; NetworkName: STRING): BOOLEAN;
VAR InvertArray: ARRAY[1..MaxNodes,1..MaxNodes + 1] OF REAL;

TransposeCount, i,j, k: INTEGER;

divisor, multiplier, temp: REAL;

transpose: ARRAY[1..MaxNodes,0..1] OF INTEGER;

Fileinfo: SearchRec;

DataFile: FILE;

(*“InvertArray[]* holds the enhanced matrix while elementary row operations
are performed. “transpose” holds information on any row interchanges
required during the upper triangularization process. °)

(“The following function interchanges two rows of the InvertArray matrix if
that is required to bring a non-zero iNo & diagonal position. The
function retums FALSE only if there are no non-zero elements below the
diagonal.®)

FUNCTION Interchange(row: INTEGER) BOOLEAN;
VAR i, j, k: INTEGER,;
temp : REAL;

BEGIN

j=i+ 1

WHILE ((j < NumberStations + 1) AND (invertAnayij.ij = 0)) DO
j=j+1;

IF j = NumberStations + 1 THEN

BEGIN
interchange = FALSE;
EXIT

END;

AIRMICSHARRIS CONTRACT DAKF11-88-C-0052
73

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

FOR k = i TO NumberStations + 1 DO
BEGIN
temp = InvertArayfik];
InvertArray[ik] = InvertArray{j k];
InvertArrayij k] = temp
END(*FOR k...*);
TransposeCount = TransposeCount + 1;
transpose[TransposeCount, 0] := i;
transpose[TransposeCount, 1] = j;
interchange := TRUE
END(*Interchange*);

BEGIN
(“First, open the file and fetch the relaevant data.”)

NetworkName = NetworkName + '.top’;
FindFirst{NetworkName, AnyFile, Fileinto);
IF DOSErmor <> 0 THEN
BEGIN
SolveThruputs = FALSE;
EXIT
END
ELSE
BEGIN
ASSIGN(DataFile, NetworkName);
RESET(DataFile, 1);

(“Solution for the thruoughputs is carried out by enhancing the coefficient
matrix with the column of source rates for the nodes, and then transform-
ing the coefticient matrix to upper triangular form. From this form, the
unknowns (thruoughputs), can be iteratively determined from the last to
the first (Biblical method).*)

(“First load required data to InvertArray*)

FetchData(Trafficindex, 0, arrivals, DataFile);
FOR i := 1 TO NumberStations DO

InvertArrayfi, NumberStations + 1] := StationSourceRate[i};
FetchData(Trafficindex, 0, connectivity, DataFile);
FOR i := 1 TO NumberStations DO

FOR j := 1 TO NumberStations DO

InvertArray{i,j] := -Topologyli.il;
CLOSE(DataFile)
END(*IF DOSEmor...ELSE...*);

FOR i := 1 TO NumberStations DO

InvertArrayfi,i] .= InvertArrayfi,ij + 1.0;
TransposeCount := 0;
(*Matrix is defined: ready to begin upper triangulation.®)

FOR i := 1 TO NumberStations -1 DO
BEGIN

(*First, check that next diagonal element is non-zero, and perform a
row transposition if necessary.*)

IF InvertAmrayfi,i] = 0 THEN

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
74

MULTIMEDIA NETWORK DESIGN STUDY -- FIRST YEAR FINAL REPORT

IF NOT Interchange(i) THEN
BEGIN
SolveThruputs = FALSE;
EXIT
END(*IF NOT ...*);
divisor := InvertArrayfi, i];

(*Normalize i-th row so diagonal element = 1.%)

FOR j := i TO NumberStations DO
InvertArray{i,j] := InvertArmrayfi,j)/divisor;

(*Now do subtraction of multiple of i-th row from each following row
to zero out i-th column below diagonal.*)

FOR j := i + 1 TO NumberStations DO
BEGIN
multiplier := InvertArray{j,jl;
FOR k = i TO NumberStations + 1 DO
InvertArray[j, k] := InvertArray(j k] - muttiplierInvenArrayfi k};
END(*FOR j...")
END(*FOR i...*);

(*Now solve iteratively backward, from last to first throughput, and
place in StationThruput array.*)

FOR i .= NumberStations DOWNTO 1 DO
BEGIN
temp := InvertAmray[i, NumberStations + 1);
FOR j := i + 1 TO NumberStations DO
temp := temp - InvertArray{i,j]"StationThruputs[Trafficindex, jJ;
StationThruputs[Trafficindex, i} := temp/invertArray{i,i]
END(*FOR i...");

(*Need to perform interchange, if any, of solutions*)

FOR i := 1 TO TransposeCount DO

BEGIN
j = transposefi,0];
k := transpose]i,1];
temp := StationThruputs[Trafficindex, j);
StationThruputs(Trafficindex, j] := StationThruputs[Trafficindex, k);
StationThruputs[Trafticindex, k] := temp

END(*FOR i...*);

SoiveThruputs = TRUE

END(*SolveThruputs*);

END(*NetComp").

AIRMICS/HARRIS CONTRACT DAKF11-88-C-0052
75

